

Gordon Charlton, 2022 

[build do] is quackery

a lightweight, open-source

language for recreational

and educational programming

The Book of

QUACKERY

This work is licensed under the Creative Commons Attribution 4.0

International License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. 

Foreword

On the 30th of November, 2018, I posted on Facebook that I had an idea for a programming language
to be called Quackery, along with a first bit of tentative code towards that goal. Today, on the 30th of
November, 2020, I find myself finishing The Book of Quackery by writing the foreword. The seeds for
it were planted a lot earlier, in the Christmas of 1979, when my parents gifted me a copy of the then
new Gödel, Escher, Bach: an Eternal Golden Braid, by Douglas Hofstadter. I was seventeen, and, if I
recall correctly, I had finished reading it for the first time by the New Year. This was what triggered my
interest in computer programming, and in the following years, while lecturers at Plymouth Polytechnic
were teaching me BASIC, Fortran and COBOL, I taught myself Pascal, Lisp and Logo, languages
closer to the spirit of Gödel, Escher, Bach, and, to my mind, far more exciting and mind expanding. 
 
After college I bought a Jupiter Ace, a tiny computer similar to the Sinclair ZX81 in design, but with a
significant difference; rather than running BASIC, it ran a language called Forth, which I knew of only
by repute, as a difficult and obtuse language. I found it to be anything other than that. Yes, much of it
was unfamiliar, but it was constructed on familiar principles, and had a simplicity and elegance in its
conception that challenged much of the received wisdom I had been taught at college regarding the
complexity of designing and implementing a programming language. It reminded me very much of
Lisp because in many ways the two languages are two sides of the same coin. I would describe their
relationship like this.

Forth and Lisp are mirror images. Their opposites include postfix v. prefix, static allocation v.
dynamic allocation, explicit v. implicit stack. The primary point of coincidence is that executing
a Forth word and evaluating a Lisp function are both depth first tree traversals. They are both
interactive and extensible, and simple enough to understand all at once.

Lisp comes from academia and the lambda calculus, a world where more abstract means more
fundamental, and computing is mathematics made real with information processing
technology.

Forth comes from pragmatism and electrical engineering, where more fundamental means
closer to the silicon, and software is hardware by other means.

In short, they are as different as Church and Turing, which is to say demonstrably equivalent.

 
The path of one’s life is seldom a straight line, and I set computer programming to one side to pursue
other things for several decades, until the winding paths I had followed crossed with programming
again, and I had the inclination to take it up once more as a pastime.

What took me by surprise is that my early interests had not so much withered from lack of use as sat
on the back burner of my subconscious, gently simmering away until they were one thing, a language
that encapsulates everything I find amazing about computing, and that retains the features I most love
about programming; being simple enough to expound in a short book, whilst running on modern
hardware rather than the clunky keyboards and tiny screens of the 1980s, which I do not look back on
with such sentimentality.

I dedicate this book to my wonderful wife and children, Maya, Alex, and Laura, whom I love dearly. I
thank them for abiding my eccentricities and supporting my endeavours. 
 
I dedicate the language Quackery to those intellectual giants; Moore, McCarthy, Wirth, and Feurzeig,
Papert & Solomon, on who’s shoulders I have been honoured to stand.

If nothing else, I hope you get from this book the idea that you can set yourself a goal you feel is just
beyond your reach, a small mountain to climb, and achieve that goal while enjoying every step of the
journey, as I have done. 

 of 1 160

Contents

p3 	 What is Quackery?

What to expect of Quackery and The Book of Quackery.

p4 	 Installing Quackery

How to get Quackery up and running on your system.

p6 	 Quackery says Hello World!

The obligatory first experience, in a surprising amount of detail.

p9 	 Quackery is Forwards Lisp

The only barrier to Reverse Polish Notation is unfamiliarity.

p10 	 The Quackery Stack, More Stacks, and The Other Stack

The hurdle at the start of the learning curve. We take the hurdle slowly.

p15	 Stack Comments

A convention worthy of an entire page to itself.

p16	 Stackrobatics

A necessary skill you can learn with practice and examples.

p22 	 Quackery Control Flow

Quackery flows from left to right, with skipping and jumping.

p23	 Dealing With Quackery

Strings and nests. Examples to work through.

p33	 Problem, Problem, Problem

There are no errors in Quackery. That’s because we call them “problems” instead.

p37	 Extending Quackery

Extending Quackery, using the example of vulgar fractions.

p49	 Sorting and Searching

Testing a Quackery design decision, and implementing a paradigm outside of its bailiwick.

p60 	 Quackery is Not Forwards Lisp

…but it could be. Dispensing with jumping around.

p65 	 What’s in a Name?

A summary of some key points before we get to the long list of word behaviours.

p66	 Words, Numbers, and Nests

Mostly a contents page for the long list of word behaviours.

p68	 Word Behaviours

The long list of what every word does, with example code.

p125	 Quackery in Python

Fifty thousand-ish characters (including whitespace) of Python, half of which is Quackery.

p157	 Under the Quackery Bonnet

Notes about the Python code. 

 of 2 160

What is Quackery?

Quackery is a lightweight, open-source programming language suitable for recreational and educational
purposes. It combines ideas from Lisp and Forth, so is quite different to many mainstream languages.  
 
From a technical point of view one could think of it as an assembly language for a stack machine (i.e. a
computer processor that provides support for two or more stacks rather than the almost ubiquitous
registers and call stack model) that directly supports a dynamically allocated memory model (i.e.
dynamic arrays), rather than a contiguous array of memory locations, (i.e. RAM). While there are some
hardware implementation of stack machines, other than the occasional research paper that considers
hardware support for aspects of dynamic memory management, dynamic allocation remains firmly in
the province of software, so Quackery runs on a virtual processor. 
 
Virtual stack machines are quite commonplace. Many high level languages, including Java and Python,
compile byte code for a virtual stack machine, and languages such as C++ and Rust can compile to
WebAssembly, the emerging standard for a virtual stack machine built into web browsers, and currently
supported by Chrome, Firefox, Safari and others. 
 
However, describing Quackery as an assembly language fails to convey the full nature of the language.
It neither looks nor feels like a conventional assembler, and bears more in common with structured
high-level languages. Some idea of its simplicity and power can be gleaned from a few statistics about
the implementation presented here, which amounts to thirty two A4 pages of well-spaced 12pt text,
around fifty thousand characters, including spaces and carriage returns. 
 
The first ten pages cover exception handling and define the fifty five machine code operations of the
Quackery processor. The next one and a half pages implement the Quackery processor as a depth-first
traversal of nested Python lists (dynamic arrays). After that three and a half pages are used to define a
basic Quackery compiler from first principles, enabling the rest of Quackery to be defined in Quackery.
The “rest of Quackery” is sixteen and a half pages of well formatted Quackery code, (under 27k) that
extends the language from the machine code operations stepwise up to include an extensible compiler,
decompiler, and REPL (interactive language shell). One more half page of Python brings it all together,
and the final page lets Quackery (which is defined as a single Python function) run in the Terminal app. 
 
The Python code is optimised for legibility and makes minimal use of Python libraries, uses a tiny
subset of Python 3 and avoids the use of idioms that may be unfamiliar to non-Python programmers
wherever reasonable, to make it amenable to re-implementation in other languages.

Expectation Management

Learning stack based programming can present a hurdle for programmers unfamiliar with the
paradigm. Fear not! This will be covered in some detail.

 
Quackery is not overly burdened with data types or a broad variety of data structures, so there are
plenty of opportunities for extending the language. Similarly it knows very little about input and
output. User I/O is text based, and the file handling words are rudimentary and idiosyncratic.
Programming in Quackery is reminiscent of the halcyon days of home computing in the mid-1980s,
without the funky, chunky graphics, but with a better keyboard and a much larger screen. 

A crude back-of-the-envelope calculation involving a recent Mac mini, the naive recursive Fibonacci
benchmark and some abuse of Moore’s Law suggests that Quackery would be considered speedy if it
ran at the same speed as this implementation on a similarly priced computer from 25 to 30 years ago. 
 
Implementing Quackery in another language will be easiest if the language has the following things in
common with Python; support for mixed type dynamic arrays with automated memory management,
first-class functions and arbitrary-precision arithmetic. 

 of 3 160

Installing Quackery

The Quackery program that accompanies this document runs in the Terminal. It is is a Python Script
that requires Python 3 to be installed. It was developed on Python 3.6 through to 3.10 on Mac OS
10.13 (High Sierra) through to 12.0.1 (Monterey), and Python 3.6 on Pythonista 3 for iOS. It is
recommended that it be run on the most recent stable version of Python 3, if possible. At the time of
writing the most recent version is Python 3.9.0. It can be downloaded from python.org. (For experts:
Quackery has also been tested on PyPy3 v7.0.0 on Raspberry Pi OS, and PyPy3 v7.3.7 on Mac OS, and
runs 20 times faster than using the regular Python 3 on the Pi 400, and 30 times faster on Macs.)

Mac OS Users 

Python 3.9 requires Mac OS 10.9 (Mavericks) or later. The earliest version of Mac OS that is supported
is 10.6 (Snow Leopard) and the most recent version of Python that runs on Snow Leopard is Python
3.7.6.

Download the Python 3 Mac OS installer from python.org and run it. To confirm it has worked, open
the Terminal app, type

python3 --version

at the prompt, and press enter. It should respond with “Python 3.9.0” (or whatever version number
you installed.) 
 
The following steps are for novice Terminal users. Experienced users may prefer different approaches.
You will need to know which shell your Terminal app uses. To find this out, enter

echo $SHELL

It should respond with either “/bin/zsh” or “/bin/bash”, depending on whether it uses the ZSH
shell or the BASH shell.

Put the quackery folder in your Home folder, alongside the system folders; Applications, Desktop,
Downloads, and so on. In the Terminal app, enter;

 
echo "alias quackery='cd ~/quackery; python3 quackery.py'" >> ~/.zshrc

if Terminal is running the ZSH shell, or

echo "alias quackery='cd ~/quackery; python3 quackery.py'" >> ~/.bashrc

if Terminal is running the BASH shell.

Now when you open a new Terminal window and type quackery it should change the current
directory (the Unix word for “folder”) to the quackery directory, and run Quackery. Quackery should
print this in the terminal window;

Welcome to Quackery.

Enter "leave" to leave the shell.

/O>

This is the Quackery shell, and the duck’s head prompt /O> indicates that it is ready for you to start
programming in Quackery.  

 of 4 160

http://python.org

Raspberry Pi OS and other Linux Users

These instructions are based on the Raspberry Pi 400 (at the time of writing, the only version) but are
readily adapted to other Linux systems. I suggest you put the quackery folder that contains this
document in the home folder, alongside the Desktop, Documents and Downloads folders, et cetera.

Beginners: Open the Quackery folder and double-click on quackery.py. This will open the Thonny
interactive development environment for Python. Click the Run icon. Quackery should print this in the
lower panel, labeled “Shell”;

Welcome to Quackery.

Enter "leave" to leave the shell.

/O>

This is the Quackery shell, and the duck’s head prompt /O> indicates that it is ready for you to start
programming in Quackery.

Seasoned hands: Unless you are planning to modify quackery.py (make a backup of the file first!) it
is more convenient to run Quackery in the Terminal app. Open the app and navigate to the quackery
directory with cd. Run Quackery in the terminal by entering “python3 quackery.py” Assuming the
quackery directory is in the Home directory;

cd ~/quackery

python3 quackery.py

To automate this process, leave Quackery by entering “leave” and pressing return twice, then enter

echo "alias quackery='cd ~/quackery; python3 quackery.py'" >> ~/.bashrc

Now, next time you open the terminal you can just enter “quackery”.

Windows Users

This section is currently omitted as I do not have access to a Windows machine. Please contact me if
you can provide a similar walk-through to that given for Mac OS and Linux users. Thank you.

All Users

The folder sundry contains some examples of code written in Quackery, including demo.qky, which
contains a small selection of coding classics. It can be run from the terminal by entering quackery
sundry/demo.qky – assuming you have set up the word quackery as an alias as described above.

Quackery and the Keyboard

Before we start, one word of caution. Quackery only understands a limited set of keyboard characters.
They are the printable characters

0123456789AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrS

sTtUuVvWwXxYyZz()[]{}<>~=+-*/^\|_.,:;?!'"`%@&#$

and the whitespace keys <space> and <carriage return>. Anything else will be turned into a
question mark during input and output. The reason for this is discussed in the User I/O section of
Word Behaviours. 

 of 5 160

Quackery says Hello World!

It is traditional when learning a programming language to start with the question “how do you make it
say Hello World!”? In Quackery, the answer is; “say "Hello World!"”. So type that in at the duck’s
head prompt, then press enter twice.

/O> say "Hello World!"

...

Hello World!

Stack empty.

/O>

The question “how did Quackery do that?” has a longer answer, and by the time you have worked your
way through this document you should be able to answer it yourself. That journey starts with the next
thing people traditionally ask of a programming language, “what is 2+2?”. So type that in.

/O> 2+2

...

Unknown word: 2+2

Stack empty.

/O>

The first rule of Quackery is; everything is separated by spaces or carriage returns. It assumed that
“2+2” is a word, and it is acceptable as such by Quackery standards, but it’s not a word it knows. So let’s
try again, with spaces in between the numbers and the +.

/O> 2 + 2

...

 Problem: Stack unexpectedly empty.

Quackery Stack:

 Return stack: {[...] 0} {quackery 1} {[...] 6} {shell 5} {quackery 1}

/O>

The second rule of Quackery is; don’t fret over problems – they will happen a lot. When you program
in Quackery you are communicating directly with hardware, albeit virtual hardware, and very simple
hardware in many respects. It’s the sort of straight forward notion of a computer processor that you
find in introductory textbooks, not the sophisticated and complex products you would find in a
modern computer or mobile device. Consequently, if you inadvertently instruct it to do something
impossible, it will report some diagnostic information that will make more sense as you advance in your
understanding of Quackery. When a problem occurs, the stack will be emptied for your convenience. It
is possible to inflict sufficient damage to Quackery to crash it completely. This will be covered later. To
see that in action, you might try entering ' if take (including the apostrophe). That’ll do the trick.

Here is a version of “2+2” that works.

/O> 2 2 +

...

Stack: 4

/O>

Quackery successfully added two and two, and left the answer on the stack.

 of 6 160

You may well be wondering by now; “Quackery”, “shell”, “duck’s head”, is there going to be much of
this asinine anatine punnery? Well… there is going to be some. But not much. I mostly got over that a
few months into development.

We have seen examples of words, which are any sequence of printable characters, some of which
Quackery recognises. To see the full list, enter the word words into the shell, and it will display them
all. (They are separated into two lists, the longer one has the names of Quackery instructions, like + and
echo, and the shorter one is a list of builders, special words that are part of the Quackery compiler.)

And we have seen examples of numbers. Numbers in Quackery are whole numbers, and they can be as
large as you like, as far as practical considerations such as time and computer memory permit. It is
entirely possible to extend Quackery to include other sorts of numbers, but this is what you get straight
out of the box. Quackery is not “batteries included” (Python PEP 206); its approach is more “Through
the use of a few simple tools, my creativity will flourish.” (Julia Cameron, The Artist’s Way).

The third thing that Quackery has is a way of grouping things together to make composite objects. We
make composite objects by enclosing them in brackets, thus:

[72 101 108 108 111 32 87 111 114 108 100 33]

Composite objects in Quackery are called nests, because they can be nested, like Russian nesting dolls.
A nest can contain numbers, names and nests. (Internally, in the implementation of Quackery
presented here, nests are Python lists, which are, technically speaking, dynamic arrays, but that’s by the
by. They’re an ordered sequence of things.) This nest contains a sequence of twelve numbers.

If we were to enter this nest into the shell, it would put each of those numbers on the stack, one after
the other, which is probably not entirely useful. It may be useful in some particular circumstance, and it
is a valid Quackery program, but it is hard to imagine such a circumstance.

However, if we precede it with an apostrophe, or ‘single quote’, thus:

/O> ' [72 101 108 108 111 32 87 111 114 108 100 33]

...

Stack: [72 101 108 108 111 32 87 111 114 108 100 33]

then the nest appears on the stack as a single object. Next, we will enter the word echo$ (the peso sign
or dollar sign, $, is pronounced “string” in Quackery.)

/O> echo$

...

Hello World!

Stack empty.

echo$ interpreted that nest of numbers as a string of characters and echoed it to the screen. Quackery
said Hello World! (Again!)

Quackery represents a string of text as a nest of numbers. In the same way that it only understands
whole numbers, Quackery only understands a limited range of characters. This is covered in more
detail later. For now it is sufficient to know that if a character appears to turn into a question mark, it is
because it is outside the range of characters that Quackery understands.

Typing in nests of numbers is not the most convenient way of dealing with text. Luckily there is a
builder that knows about strings. It is $. $ understands strings, and converts them into quoted nests of
numbers. So we can write $ "Hello World!" echo$ and that too will echo Hello World!.

 of 7 160

The quotation marks " at either end of the text are called the “delimiters”. A delimiter cannot occur
inside a string. If you want to make a string with quote marks in it, you would need to use a different
delimiter. Quote marks and apostrophes are the most sensible choices for delimiters, but any character
that Quackery understands will work equally well, as long as the same delimiter occurs at each end of
the string. (The word cr is an instruction to print a carriage return - i.e. start a new line.)

/O> $ /Hello World!/ echo$ cr

... $ zHello World!z echo$ cr

...

Hello World!

Hello World!

Stack empty.

The next stage is to extend Quackery to include a word that echoes Hello World! to the screen,
followed by a carriage return. We do this by putting the sequence of instructions into a nest with the
aid of [and], to make it a single item, and then give that item a name, using is.

/O> [$ "Hello World!" echo$ cr] is hello

... hello hello

...

Hello World!

Hello World!

Stack empty.

So far we have seen some numbers, four regular Quackery words and five Quackery builders, but didn’t
really explain how they worked. The regular words were +, echo$, cr and '.

+	 added the two numbers that preceded it and left the result on “the stack”.

'	 (“quote”) put the thing that followed it, a “nest”, on “the stack”.

echo$	printed a string that was on “the stack”. We saw that a string is a “nest” of numbers.

cr	 started a new line of text on the screen. (“Printed a carriage return.”)

The five builders were [,], $, is, and say.

[] 	 worked together to enclose a sequence of things and turned them into a nest.

$	 took the string that came after it and turned it into a nest.

is	 took the thing that preceded it, and gave it a name. The name followed is.

say	 took the string that followed it and printed it.

We will discuss the stack at length in a while, but for now it’s “the place where things go”, because
everything has to be somewhere. If Quackery were a workshop, the stack would be the workbench
where you put stuff in order to work on it.

The Quackery compiler, which is called build, is straightforward; it recognises regular Quackery words
and numbers and lays them down one after another just as a real world bricklayer would lay down a row
of bricks. When it encounters a builder word, that’s its cue to call in a specialist, a “builder”. Builders
extend what the compiler is capable of, to add new and useful tools, like nests and strings, or to gussy
up the language by adding some decorative trim. This is known as syntactic sugar.

Quackery has a syntactically sugared version of $ "Hello World!" echo$. It is the builder called say
that started this chapter.

How builders work will be described later. First there are some basics to cover, starting with “why

2 2 +, and not 2+2”?  

 of 8 160

Quackery is Forwards Lisp

“What is three times four plus five times six?”

This is how we learn arithmetic at school, and how it is expressed in most computer languages.
3*4+5*6. Assuming that the language conforms to the “order of operations” convention (i.e. BODMAS,
PEMDAS, BEDMAS, or BIDMAS, depending on where you live) a conventional language would do the
multiplications first, then the addition. For clarity, one might write (3*4)+(5*6). This is infix notation,
which requires knowing the order of operations to decipher (“parse”) it and requires parentheses for
some expressions, or to make expressions that don’t strictly require parentheses simpler to understand.
Parsing it requires you to jump around the expression, working out in what order to do things.

“What is the sum of the product of three and four and the product of five and six?”

This is the same question, with a more academic ring to it. If you say it out loud you can almost hear a
dusty professor peering quizzically over half-moon spectacles. In a parenthesised prefix language such
as Lisp it would be written (+ (* 3 4) (* 5 6)). Once you are familiar with the notation, parsing it
requires finding the deepest nested parentheses and working outwards and backwards, from right to
left, again doing the multiplications first, then the addition. It is consistent and logical, but written
backwards if you are used to reading text from left to right.

“Take three and four and multiply them. Take five and six and multiply them. Add the two results.”

This time the expression is not a question, it is a step-by-step sequence of instructions. There is no
ambiguity, no complicated parsing, just follow the steps one after the other from left to right and get
the result. In a postfix language such as Quackery it would be written 3 4 * 5 6 * +. 
 
If you worked out the answer to the questions “What is three times four plus five times six?” or “What
is the sum of the product of three and four and the product of five and six?” when you saw them, you
effectively parsed them into the steps “Take three and four and multiply them. Take five and six and
multiply them. Add the two results.” When a compiler for a mainstream procedural language or a Lisp
style functional language parses an arithmetic expression, it does the same. Compilers make use of a
data structure known as a stack to do this, which is not directly available to the programmer.

Stack based languages such as Quackery assume that you are at least as smart as the computer you are
programming and capable of exercising this skill of parsing arithmetic expressions, while making the
stack available to you. This means that various optimisations can be applied which are equivalent to the
idea of using register optimisations when coding in an assembly language for a register based processor.

These will be covered in the section Stackrobatics, which explores the use of stack management words
in Quackery, but first we will look at what a stack is, the various Quackery stacks, and why Quackery
has no variables, in the section “The Quackery Stack, More Stacks, and The Other Stack”. 

 of 9 160

The Quackery Stack, More Stacks, and The Other Stack

1. The Quackery Stack

The stack is, allegedly, the most confusing aspect of stack-based languages. If you had a stacking toy as
a toddler, you know what a stack is. If you have played the Towers of Hanoi puzzle game, you have
some expertise in dealing with stacks. It’s a “last in, first out” data structure. The last ring you put on
the stacking toy is the first ring you take off.

The sum from the previous section was 3 4 * 5 6 * +. Let’s watch Quackery process it. We will start
at the left and work our way to the right. Open the terminal app and get the quackery shell up and
running. Type in each of the numbers and instructions one at a time, pressing enter twice each time.

/O> 3

...

Stack: 3

/O> 4

...

Stack: 3 4

/O> *

...

Stack: 12

/O> 5

...

Stack: 12 5

/O> 6

...

Stack: 12 5 6

/O> *

...

Stack: 12 30

/O> +

...

Stack: 42

To summarise, the numbers 3 and 4 appear on the stack, which builds up from left to right across the
screen. * takes the 3 and 4 off the stack and replaces them with 12, which is 3*4. (This is standard
behaviour for Quackery – we say that words “consume their arguments”.) 5 and 6 go on the stack
above the 12, and again * multiplies them, replacing them with the result, 30. Finally + adds the top
two items on the stack, 12 and 30, and replaces them with the result.

Things other than numbers can go on the Quackery stack, as we saw in Quackery Says Hello, where
there was a string on the stack. We’ll see this again in Dealing With Quackery. For now, numbers will
suffice. 

 of 10 160

2. More Stacks

Quackery has no variables. It does, however, have ancillary stacks, which can be used like variables.

To illustrate their use as local variables, we will consider a simple problem.

As an avid box collector specialising in cuboid boxes, you like to maintain some statistics in your
catalogue of interesting boxes. For each box, you note the length, width and height of each box in
centimetres, then calculate their volume, surface area, and the length of all their edges, and note that
down too. The calculations are rather laborious, so you have decided to make some Quackery words to
perform the arithmetic for you.

Volume is easy enough. Say the dimensions of a box are 3, 4, and 5, then entering 3 4 5 volume
should return the answer 60. (=3*4*5.) First we’ll put 3 4 5 on the stack, then do a * and see what
happens.

/O> 3 4 5

... *

...

Stack: 3 20

As we might have expected, * has multiplied the top two items on the stack and replaced them with the
result. A second multiplication should multiply that result by 3, giving a final result of 60.

Stack: 3 20

/O> *

...

Stack: 60

We have enough now to define a word called volume, using [and] to group the two *s into a nest,
and is to give the nest a name. As diligent Quackery programmers we will also write a “stack
comment” for our new word, to remind ourselves what our word needs to find on the stack, and what
it will replace those stack items with. Comments can be entered using the builders (and), which
ignore what is between them.

 
First we will make sure the stack is empty with the word empty, which empties the stack. It’s a useful
tool during development, when the stack can end up littered with all manner of detritus, in this instance
the number 60.

/O> empty

... [* *] is volume (length width height --> volume)

... 3 4 5 volume

...

Stack: 60

Calculating the length of the edges in similar. It’s four times the sum of the length, width, and height.

/O> empty

... [+ + 4 *] is edges (length width height --> length-of-edges)

... 3 4 5 edges

...

Stack: 48 

 of 11 160

This approach is not going to work for calculating the surface area, as we need to use the length, the
width and the height of the box more than once, and these numbers are removed from the stack as
soon as we do some arithmetic on them. We could use ancillary stacks here. As we will find out, it’s not
the best approach, but it is a good way to introduce ancillary stacks, so here we go.

An ancillary stack can be created using [stack] is name-of-stack. We will create three, called
length, width, and height.

[stack] is length

[stack] is width

[stack] is height

The word put will put a number on the stack onto an ancillary stack. So if we enter

5 height put, the 5 will be moved from the stack to the ancillary stack called height.

share puts a copy of the topmost item of an ancillary stack onto the stack.

release removes the topmost item of an ancillary stack.

There are some other ancillary stack words, which are covered later, but these are sufficient for now.

The surface area of a box of is ((length*width)+(length*height)+(height*width))*2. So we
can define surface as

[height put

 width put

 length put (note a)

 length share width share *

 length share height share *

 height share width share * (note b)

 + + 2 * (note c)

 height release (note d)

 width release

 length release] is surface (height width length --> surface-area)

note a, at this point we have moved all three parameters to their respective ancillary stacks.

note b, now the stack contains length*width length*height height*width

note c, now the stack contains the surface area of our box.

note d, it is important to tidy up ancillary stacks when you are finished with them.

We should test code as soon as it is written. (The surface area of our 3 4 5 box is 94 cubic
centimetres.)

/O> 3 4 5 surface

...

Stack: 94

surface is remarkably wordy compared to edges and volume, and as noted, we will get to a better
way to define it, but for now we will continue with this approach, mostly in order to reinforce the point
that ancillary stacks are stacks, not variables. It is also worth noting that sometimes an ancillary stack is
the right approach, and the occasional use of an ancillary stack is fine. In fact there is one ready
defined, called temp, which some system words use but is fine for general use as a local variable, as long
as you tidy up after yourself.

 of 12 160

Other system ancillary stacks include base, which is used to specify the base for reading and displaying
numbers during input and output. It has a default value of 10, but can be temporarily overridden with
put and release. It is not a local variable, a better description would be an overridable global
constant. To give an ancillary stack a default value, include it in the definition of the ancillary stack,
thus:

[stack 10] is base

(Useful tip: to see what is on an ancillary stack during development, enter the name of the stack and
the word copy in the shell.)

/O> 11 temp put

... 22 temp put

... 33 temp put

... temp copy

...

Stack: [stack 11 22 33]

/O> empty

... temp release

... temp release

... temp release

... temp copy

...

Stack: [stack]

What we are seeing here is that ancillary stacks store their contents within their own definitions, and
that ancillary stack words like put and release modify those definitions. This makes ancillary stack
words potentially dangerous, as they can be abused to modify definitions that should not be modified.
Quackery does not prevent this – it is as permissive a language as it reasonably can be, but if you’re
going to practice mischief like that, expect consequences.

Also expect consequences from tampering with system ancillary stacks with names like with.hold or
sort.test – the naming convention suggests that the stacks are specific to particular words (with and
sort respectively), and using them outside of that context is generally A Bad Idea, Don’t Do It.
Usually this is because the system is using these ancillary stacks to convey information around while
keeping the stack uncluttered for the programmer to use.

Continuing with out box collector example, after using the words volume, edges, and area for a while
you decide it would require less typing if you combines them into one word - stats. To improve it a
tiny bit we will introduce one more ancillary stack word, take, which is the opposite of put; it removes
an item from an ancillary stack and puts it on the stack. So temp take is equivalent to temp share
temp release. This allows us to tidy-up as we go along, so to speak.

[height put width put length put

 height share width share length share edges

 height share width share length share surface

 height take width take length take volume] is stats

(height width length --> length-of-edges surface-area volume)

/O> 3 4 5 stats

...

Stack: 48 94 60

 of 13 160

3. The Other Stack

 
Before we continue with our Dimensions of a Box problem, we’ll look briefly at the other stack.

The overwhelming majority of processors have hardware support for a stack, often referred to as “the
stack”, which would be somewhat confusing in Quackery, where “the stack” refers to the Quackery
stack, as described above. So it will always be referred to as the “return stack” in this document. It
allows the Quackery processor to keep track of nesting as it traverses a program.

Nesting comes in two forms, implicit and explicit. In the nest named stats, defined on the previous
page, every word in that nest is the name of a nest. This is implicit nesting. Explicit nesting is where a
nest is visibly embedded inside another nest, thus: (here, a, b, c, et cetera are arbitrary Quackery items;
names, numbers, or nests). 

[a b [c d] e f]

This is a nest that contains five items, a, b, the nest [c d], e, and f. In order to traverse that nest
from left to right it first does a, then b, then the nest [c d], then e, then f. The processor maintains
a number indicating which of the five items it is currently processing, and a pointer indicating which
nest it is currently processing. In order to process a nested nest, such as [c d] (or an implicitly
nested nest – any of a, b, c, d, e, or f may be named nests) it copies the item number and nest pointer
to the return stack, and retrieves them once it has finished traversing the nested nest.

This differs from the majority of other processors, which typically maintain a single pointer to the
current address being processed. Another difference is that the Quackery processor is jealously
protective of its return stack, and provides only limited ways of modifying its contents, giving
Quackery structured control flow at the virtual hardware level.

The final difference is that the return stack is only used for control flow purposes. “Stack frames” – a
feature of the majority of high level languages, which are used to transfer arguments to functions,
return results and store local variables – are not required in Quackery as these functionalities have been
factored out into the Quackery stack and the ancillary stacks, where they are accessible to the
programmer. 
 
It should be noted that these design choices are a source of inefficiency in the implementation of the
virtual Quackery processor presented here, which emphasises simplicity and legibility over speed of
execution. However, in a theoretical hardware implementation, or in a virtual machine coded in a more
pedal-to-the-metal language, not having to maintain stack frames makes for a language which need not
discourage extremely short or deeply nested function definitions for the sake of efficiency.

For further reading on Stack Processors I recommend “Stack Computers: the new wave” by Philip J.
Koopman, Jr., https://users.ece.cmu.edu/~koopman/stack_computers/ 
 
In my lay understanding of Stack Processors I envisage a possible hardware Quackery processor as a 64
bit machine, with 60 data bits (and consequently a 60 bit address space) and 4 metadata bits. The
metadata would encode four types of data in two bits; pointer to nest (i.e. Jump to Subroutine), pointer
to bignum nest, bignum nest, and operator (machine code instruction.) One bit would flag the end of a
nest (i.e. Return from Subroutine) or bignum nest, and one bit would be reserved for garbage
collection.

(Bignum nests are not covered in this document. Python successfully hides the implementation of its
bignums from the programmer, so the details are not necessary for understanding Quackery. I use the
term “nest” here to suggest they are somewhat similar to Quackery nests.) 

 of 14 160

https://users.ece.cmu.edu/~koopman/stack_computers/

Stack Comments

This document and its accompanying files follow the convention of providing stack comments for
Quackery words. Although not compulsory you are encouraged to adopt this convention as a minimum
requirement for commenting words.

They take the form (before-stack --> after-stack) where before-stack indicates the stack items that are
consumed by the word, listed with the top of stack at the right, and after-stack indicates the stack items
returned by the word, in the same order.

The stack items are represented in various ways.

Where they are discussed in accompanying text, the letters a, b, c, and so on are used.

In the program listings provided, single characters are used to indicate the item types consumed and
returned by the word. (Terms not previously described will be described in due course.)

x -- any item

n -- a number

b -- a number being used as a boolean

f -- a number being used as an ordered set of booleans (f = flags)

c -- a number being used as a character

[-- a nest

$ -- a nest being used as a string

s -- a nest being used as an ancillary stack

* -- a variable number of stack items

A few words have take or return a variable number of stack items. Generally words should take a fixed
number of items. Words that take a variable number should be defined sparingly and only when
justified. Examples of predefined words in this category include pack and unpack, described below.

Other words have variable stack effects because they “do” other words, nest or numbers. “doing” a
word will be described in due course. The stack comments of these words assume that the thing being
“done” has no effect on the stack. (-->). Often this will not be the case.

The accompanying PDF crib-sheet, “Quackery Quick Reference” uses a mix and match approach to
stack comments to try to cram as much useful information as possible into a single page.

When it is meaningful, the items listed in a stack comment should use names that are context specific,
just as in a conventional language one should give helpful names to a function’s arguments.

As should be apparent by now, stack commenting is a bare-bones convention that only covers the
simplest of cases (which should be the overwhelming majority of your code), and is not an alternative
to properly documenting code for the benefit of others, and for yourself when you return to it having
forgotten the details of how the code works.  

 of 15 160

Stackrobatics

Returning to the Dimensions of a Box problem, we could conclude that they work and are therefore
not in need of fixing, but there is something of a discrepancy between the words volume and edges,
which are remarkably short, and the words surface and stats, which are noticeably lengthier and use
ancillary stacks. 
 
Is it possible to shorten these two words and make them more efficient at the same time? Yes. It
requires learning a skill that is peculiar to stack based languages; stack management or stack
optimisation, jocularly referred to as stackrobatics or stack juggling.

In a register based processor it is a sensible optimisation to try to use the very fast memory within the
processor – the registers – as much as possible, rather than moving data back and forth between the
processor and RAM. Similarly, in stack based languages it is good practice to avoid excessive use of
ancillary stacks or their equivalent, and favour the exclusive use of the stack as far as is reasonable.

To this end, Quackery provides a collection of stack management words, which are listed in the upper
left of the handy Quackery Quick Reference PDF, the one page crib sheet that comes with Quackery.

dup (a --> a a)

drop (a -->)

swap (a b --> b a)

rot (a b c --> b c a)

unrot (a b c --> c a b)

over (a b --> a b a)

nip (a b --> b)

tuck (a b --> b a b)

2dup (a b --> a b a b)

2drop (a b -->)

2swap (a b c d --> c d a b)

2over (a b c d --> a b c d a b)

pack (a b 2 --> [a b])

unpack ([a b] --> a b)

dip ** (a b c --> a**b c)

Spend some time experimenting with these in the shell. If you like, leave out pack, unpack and dip for
the moment, they will be explained presently. Put a bunch of numbers on the stack, enter one of the
stack management words and see what happens. Can you replicate the behaviour of one of the words
by using two or more of the other words? (As a reminder, empty will empty the stack, if you want to
tidy up while you are playing.)

We can categorise them as duplicating, disposal, reordering, composite, and extending. 
 
The duplicating words, dup and 2dup circumvent the “words consume their arguments” principle.
They are the “we will need this again” words.

The disposal words, drop and 2drop do the opposite. They are the “we no longer need this” words.
One common use is after a looping structure. Jumping ahead to introduce one of the looping words,
times does the thing that follows it a specified number of times. example will echo the string on the
top of the stack to the screen five times, keeping the the string on the stack using dup, and then
disposing of it afterwards using drop.

/O> [5 times [dup echo$] drop] is example ($ -->)

... $ "Hello " example

...

Hello Hello Hello Hello Hello

Stack empty.

 of 16 160

The reordering words, swap, rot, unrot, and 2swap serve a couple of purposes.

Words consume stack items and return results in a specific order. If they consume more than one item,
occasionally the order is unimportant, as with + and *, but usually it matters, and here is a coding tip;
when defining a word, if there is a natural reading for the order of arguments, consider using that first;
it will make the word usage a lot easier to remember. A good example is /mod, which divides one
number by another and returns the result of the division, and the remainder. “a divided by b is c
remainder d”, e.g. “twenty divided by six is three remainder two”.

/O> 20 6 /mod

...

Stack: 3 2

You may well need to reorder stack items before a word to fit the word’s requirements.

Or you might need a result that was computed earlier and has become buried under one or two stack
items, or to bury a stack item until it is required. And here is another coding tip; sometimes the order in
which you compute things is not important. If you can use a stack item when it is at or near the top of
the stack, do so. It helps keep the stackrobatics to a minimum. So if you find a definition is needing a
lot of stack management words, consider the order in which things need to be done, and where the
order of operation is flexible. Try some variations and go with the one that requires the least stack
juggling.

The composite words, over, nip, tuck, and 2over, combine elements of duplication or disposal with
reordering. But let’s not get hung up on this impromptu taxonomy of stack management words. Mostly
it’s just a way of saying “think about what you want to achieve and if it’s getting messy try a few
different combos to see what works best for a given situation.” The composite words acknowledge that
sometimes two or even three stack management words are needed in a row, and address some of the
more commonly occurring situations. (Parenthetically, the words thus far are the core words in many
implementations of the Forth programming language, so there is a basis to claiming that they are a
reasonable choice for a set of stack management tools.) Four stack management words in a row should
raise a red flag, telling you that it is very likely that there is a better approach than the one you have
chosen. Start by breaking the definition down into subtasks and coding each subtask separately. (This is
called factoring.) A well factored program has lots of short definitions, each of which does a single,
well defined task, and each of which can be reused elsewhere. This is the ideal situation. In practice, not
everything factors well, but mostly it does. Don’t lean on this observation as an excuse for poor
factoring!

Here I have to put my hands up and admit that the portion of Quackery that is coded in Quackery
sometimes falls short of these ideals. Some of the definitions, in particular build and unbuild, are
undeniably long by Quackery standards, and on a couple of occasions there are four stack management
words in a row. In my defence I note that the longer words were developed as a set of well factored
shorter words, for ease of development, then combined into one long definition as the factored out
portions did not satisfy the reusability criterion, and “not cluttering up the dictionary with words that
did not serve a useful purpose” was very high on the list of criteria. With regard to overly complicated
stack juggling; where this occurs, a significant amount of time was spent trying to simplify the code
before I conceded that maybe this was one of those rare cases where it was justified.

The extending words, dip, pack and unpack, are not lifted from the Forth lexicon. dip has a
precedent in the concatenative language Joy, and pack and unpack to some extent stand in for the
Forth words pick and roll. They are the “extending” words because among their uses they allow one
to reach further down into the stack than the words mentioned so far. 

 of 17 160

dip temporarily removes the top item from the stack and returns it to the stack after the item that
follows it in the code has been performed. It is equivalent to temp put ... temp take, except it has
its own ancillary stack; it doesn’t use temp.

/O> empty

... 1 2 3

... dip dup

...

Stack: 1 2 2 3

/O> empty

... 4 5 6

... dip [over +]

...

Stack: 4 9 6

As the second example illustrates, the thing that follows it can be a nest, and it is not restricted to stack
management words. Note that “double dipping” requires the second dip to be in a nest.

/O> empty

... 7 8 9 0

... dip [dip +]

...

Stack: 15 9 0

dip can mean “I won’t need this for ages, so let’s shove it well out of the way for now.” Consequently
the nests that follow it can be quite long. There are instances of this in the Quackery source code.

pack and unpack are the “there’s just too much happening on the stack” words. pack takes a number
of items off the stack, puts them into a nest and puts the nest on the stack, reducing that number of
stack items to a single item. unpack reverses the operation of pack.

/O> 5 6 7 8 9

... 4 pack

...

Stack: 5 [6 7 8 9]

/O> unpack

...

Stack: 5 6 7 8 9

With our “Dimensions of a Box” problem in mind, we might guess that 3dup could be a useful
addition to the set of stack management words, and define it using dip, pack, and unpack.

/O> [3 pack

... dup

... dip unpack

... unpack] is 3dup (a b c --> a b c a b c)

... empty 1 2 3

... 3dup

...

Stack: 1 2 3 1 2 3

 of 18 160

In practice we will see that 3dup is not required, but we can use the central idea of it, so defining it was
a worthwhile exercise. (3dup can also be defined as 3 times [dip over swap] , but that would
not have given us practice in using pack and unpack, and is less easily extended to 4dup etc.)

Returning to calculating the surface area of a box, we note that the order of arguments on the stack is
not significant, as only addition and multiplication are required, and there is a symmetry to the formula.
Taking width, length and height as a, b, and c, the formula is;

((a*b)+(a*c)+(b*c))*2

which can be simplified to

((a*(b+c))+(b*c))*2

This reduces the number of arithmetic operations by one, which will make our task a little simpler.

Let’s put some numbers on the stack and start working the problem. 5, 6, and 7 can be a, b, and c
respectively. 2dup * will calculate b*c (which equals 42) and leave b and c on the stack for further use.

/O> 5 6 7

... 2dup *

...

Stack: 5 6 7 42

Now we can dip the 42 out of the way and work on a*(b+c) by adding b and c, then multiplying by
a, (which equals 65).

/O> dip [+ *]

...

Stack: 65 42

Finally we add a*(b+c) to b*c and double the result.

/O> + 2 *

...

Stack: 214

That works, so let’s put it all together in a nest, give it a name, and test it;

/O> empty

... [2dup *

... dip [+ *]

... + 2 *] is surface (a b c --> s)

... 5 6 7 surface

...

Stack: 214

I don’t know, but it is possible that if you are new to the world of stack processors you are thinking
“Oh, that’s supposed to be ‘easy’, is it?”, and have that uneasy feeling that I am looking at you askance,
sympathetically, like you were baffled by doorknobs. It is true that old hands can sometimes forget how
tricky it seems at first, but my experience was that it is much like learning to ride a bicycle; seemingly
impossible until suddenly it ‘clicks’ and you’re sailing along, perhaps not ready to enter the Olympics,
but definitely moving away from perilous wobbling and barked elbows at a respectable speed. 

 of 19 160

One way of thinking about the stack that may help is with structured data flow diagrams, where the
stack builds up from left to right, as with stack comments.

[2dup

 *

 dip

 [+

 *]

 +

 2

 *]

This raises a fairly deep point, that the stack management words are more than just optimisations, they
embody the fact that Quackery, and stack based languages in general, have both structured control flow
and structured data flow.

Moving on, let’s look again at stats. Having defined 3dup, let’s use it. We’ll put 1 2 3 on the stack for
our height, width and length and, as we will need those numbers three times, we’ll 3dup them twice.

/O> 1 2 3 3dup 3dup

...

Stack: 1 2 3 1 2 3 1 2 3

Then we need to use edges, surface, and volume to compute the results, dipping each result out of
the way as we go.

/O> edges dip [surface [dip volume]]

...

Stack: 6 22 24

This works but the results are in reverse order. We could fix that and define stats as;

[3dup 3dup volume

 dip

 [surface

 dip edges]] is stats (a b c --> e s v) 

 of 20 160

2

*

*

*

+

+

We could define it like that, but somehow the definition didn’t sit right with me. After a little
experimentation, I settled on;

 [3 pack

 dup unpack edges

 over unpack surface

 rot unpack volume] is stats (a b c --> e s v)

Walk through the code to see how it works, and convince yourself that it does work. Then decide for
yourself which version you prefer, or see if you can devise a version that you like better. ‘Best’ without
context is subjective.

At the moment, if you recall, the context of this exercise is “box collector cataloging small boxes”, so
realistically, “first version that works” is best. No optimisation is required.

If we change the context to “mathematician working with extremely large numbers” then optimisation
becomes necessary. With very large numbers, multiplication can take a very long time.

Just for fun, try it. Define [dup dup * *] is cubed, then enter 9 cubed. When the result comes
back (almost instantaneously), enter cubed again to cube the result, then enter cubed again to cube
that result, and keep doing it until you’re twiddling your thumbs waiting for the next result. What did it
take until you were getting bored? Possibly around ten to twelve steps, depending on your machine and
your patience. For some areas of mathematics these numbers are small potatoes.

Note that this slow-down is not a problem caused by Quackery running on a virtual stack processor, or
even a problem caused by Python running on a virtual stack processor; the multiplication routine is
coded in hand-optimised C, which compiles to native machine code. Multiplying two very large
numbers is inherently slow. There are clever algorithms that ameliorate the problem for humongously
large numbers, but even those are just stopgaps.

Assuming the numbers are sufficiently large to justify spending an evening treating the “dimensions of
a box” problem like a Sudoku puzzle, i.e. a mental exercise pastime, I came up with this final version of
stats that minimises the number of multiplications. (1 << and 2 << are equivalent to 2 * and 4 *
respectively, but a little faster.) The comments show the state of the stack at the end of each line on the
left, with the state of the ancillary stack temp on the right hand side of the comment.

 (a b c --> edges surface volume)

 ((a+b+c)*4 ((a*(b+c))+(b*c))*2 a*b*c)

 [2dup * (a b c b*c)

 temp put (a b c b*c)

 + (a b+c b*c)

 2dup * (a b+c a*(b+c) b*c)

 temp share (a b+c a*(b+c) b*c b*c)

 + 1 << (a b+c surface b*c)

 unrot (surface a b+c b*c)

 over + 2 << (surface a edges b*c)

 unrot (edges surface a b*c)

 temp take (edges surface a b*c)

 *] is stats (--> edges surface volume)

 of 21 160

Quackery Control Flow

There are no syntax rules for the control flow words. Mix and match them to make useful combos. 

 of 22 160

usually, proceed from left to right

 this is an item, i.e. a number, a word, or a nest

done means “jump to the end of the nest”

[]done

[]
again means “jump to the start of the nest”

again

if means “skip over the next item unless the top of stack is true (not 0)”

if

iff means “skip over the next two items unless the top of stack is true”

iff

else means “skip over the next item”

else

[]
while means “jump to the end of the nest unless the ToS is true”

while

[]
until means “jump to the start of the nest unless the ToS is true”

until

Dealing With Quackery

This is an illustration of string and nest processing in Quackery. The file cards.qky in the folder
sundry contains the code presented here. It can be added to Quackery by entering the code

$ 'sundry/cards.qky' loadfile in the shell. The goal is to extend Quackery so that code like

newpack +jokers 3 riffles 4 players 7 deal

constitutes a meaningful Quackery program. (This program would create a pack of cards with two
jokers, give it three riffle shuffles and deal four players seven cards each.)

Before we start coding the set of card handling words, it will turn out that a division word that rounds
up rather than down will be useful here, so we’ll define that first and call it /up. /mod returns the whole
number result of division and the remainder, as with primary school maths. (i.e. “ten divided by three
equals three remainder one.”) if 1+ adds one to the result if the remainder is not zero.

[/mod if 1+] is /up (n n --> n)

A pack of cards is represented by a nest of the numbers 0 to 51. “[]” puts an empty nest on the stack.
The word times does the next item the number of times specified by the number on the top of the
stack. In this example, i^ will return 0 the first time times does [i^ join], it will return 1 the
second time, 2 the third time, and so on up to 51. newpack returns a nest of the numbers 0 to 51.

[[] 52 times [i^ join]] is newpack (--> [)

Games sometimes include one or both jokers, one of which comes before all the other cards, the other
of which comes after. So we will define three words which add a low joker, a high joker and both jokers
to the pack respectively.

[-13 swap join] is +lowjoker (--> [)

[64 join] is +highjoker ([--> [)

[+lowjoker +highjoker] is +jokers ([--> [)

The numbers -13 and 64 are not arbitrary. Later we will define a word rankfirst where this is
explained. For now it is sufficient to note that -13 is less than 0, and 64 is more than 51, and to know
that their positions as first and last card will not be affected however the cards are sorted.

The rank of a card is represented by a number in the range 0 to 12. rank returns a string
corresponding to a card’s rank. The reason for the do at the end of the definition is covered in the
description of $ in the Building Words section of Word Behaviours.

table turns a nest into a lookup table, just as stack turns a nest into an ancillary stack. A table will
take a number from the stack and return an item in the table corresponding to that number. Here the
string “ace” is the zeroth item in the table, and “king” is the twelfth.

[[table

 $ "ace" $ "two" $ "three"

 $ "four" $ "five" $ "six"

 $ "seven" $ "eight" $ "nine"

 $ "ten" $ "jack" $ "queen"

 $ "king"] do] is rank (n --> $)

 of 23 160

The suit of a card is represented by a number in the range 0 to 3. suit returns a string corresponding
to a card’s suit.

[[table

 $ "clubs" $ "diamonds"

 $ "hearts" $ "spades"]

 do] is suit (n --> $)

A card number (other than the jokers, which have neither suit nor rank) is composed from a suit
number and a rank number by multiplying the suit number by 13 and adding the rank number (this is
“suit first encoding”), so that applying 13 /mod to a card number will return the rank number of the
card on the ToS, and the suit number as 2oS. This means that the nest created by cards represents a
pack of playing cards sorted first by suit and then by rank, i.e. first the clubs, ace to king, then the
diamonds, ace to king, then the hearts, ace to king, and finally the spades., ace to king.

If we had chosen to represent a card by multiplying the rank number by 4 and adding the suit number,
(“rank first encoding”) so that applying 4 /mod to a card number would have returned the suit number
of the card on the ToS and the rank number as 2oS, then the nest returned by cards would have
represented a pack of playing cards sorted first by rank, and then by suit, i.e. first the aces, the Ace of
Clubs, Ace of Diamonds, Ace of Hearts, Ace of Spades, then the twos and so on.

card takes a card number and returns the card’s name as a string. It treats the jokers as special cases.

[dup -13 = iff

 [drop $ 'low joker'] done

 dup 64 = iff

 [drop $ 'high joker'] done

 13 /mod rank

 $ ' of ' join

 swap suit join] is card (n --> $)

A pack or hand of cards is represented by a nest of cards. hand returns a string of the names of each
of the cards in a hand, separated by carriage returns.

[[] swap

 witheach

 [card join

 carriage join]] is hand ([--> $)

echocard and echohand display a card and a hand of cards on the screen respectively.

[card echo$] is echocard (n -->)

[hand echo$] is echohand ([-->)

The word sort sorts a nest of numbers into ascending order, so would sort a hand of cards into suit
first order, but there is no built-in equivalent to sorting into rank first order. We will use the phrases
sortwith bysuit and sortwith byrank to give more meaningful code.

The comparison bysuit can be used with sortwith to sort a hand of cards by suit and then by rank.

[>] is bysuit (n n --> b)

 of 24 160

rankfirst takes a card numbered with suit first encoding, and returns the same card if it were
numbered with rank first encoding. See suit, above. If rankfirst is applied to a joker, the joker will
retain its correct order in the sequence, as -13 rankfirst returns -1 and 64 rankfirst returns 52.

[13 /mod 4 * +] is rankfirst (n --> n)

The comparison byrank can be used with the word sortwith to sort a hand by rank and then by suit.

[rankfirst swap rankfirst <] is byrank (n n --> b)

cut splits a pack or hand at some random position within the nest, swaps the two halves and joins
them back together. As random will crash if presented with an argument of 0 we check that the pack is
not empty first. (Cutting a pack of zero cards is not entirely meaningful, but takes no time. Later we
won’t write defensive code for a similar error when dealing cards, despite the fact that dealing zero
cards at a time would be very silly. The test for potential problems is impossibility, not meaningfulness.)

[dup [] = if done

 dup size random split

 swap join] is cut ([--> [)

Scarne’s Cut is named after its inventor, the master magician John Scarne, who devised it as a method
of protecting US troops from card sharps during World War II. It consists of pulling a block of cards
from the centre of the pack and putting them on the top before performing a regular cut. The first step
can be repeated several times. We will use the phrases scarne cut or e.g. 3 times scarne cut to
perform a single Scarne cut or a repeated Scarne cut.

scarne splits the pack twice, initially in the first* two thirds of the pack, and then in the portion on the
top of the stack. It swaps the top and middle and joins the three pieces. Note the use of /up to avoid
passing a zero to random.

[dup [] = if done

 dup size 2 * 3 /up

 random split

 dup size dup iff

 [random split

 dip swap join]

 else drop

 join] is scarne ([--> [)

*The first card in a nest is treated as the top of the pack, so splitting the pack puts the upper portion
of the pack second on the stack, and the lower portion on the top of the stack.

players creates a nest of empty hands, one hand for each player. The word of creates a nest of a
specified number of specified items. Imagine an army quartermaster saying “Boots, two of.” before
equipping a recruit with a pair of boots. Here of creates a nest of n empty nests, which serve as hands
of cards. [] puts an empty nest i.e. “[]” on the stack, nested puts it inside a nest. i.e. “[[]]”,
and if n is 4, of will join four copies of this together; “[[] [] [] []]”.

[[] nested swap of] is players (n --> [)

 of 25 160

dealby (a b c d --> e f) deals from a pack of cards, a, into a nest of player’s hands b,
returning the nest of hands, f, on ToS, and the talon (the undealt cards), e, underneath it on 2oS. It
deals d cards at a time, and gives each player d cards, c times.

Using a small pack of ten cards to illustrate this, we will deal twice to each of three players, one card at
a time, which will leave four cards in the talon.

/O> ' [0 1 2 3 4 5 6 7 8 9] ' [[] [] []] 2 1 dealby

...

Stack: [6 7 8 9] [[0 3] [1 4] [2 5]]

If we try to deal more cards than there are in the pack, the first hands in the nest of hands will receive
the extra cards, as would happen in a real life deal. Here we try to deal three cards to each of four
players, again one card at a time, with the same short pack of ten cards.

/O> ' [0 1 2 3 4 5 6 7 8 9] ' [[] [] [] []] 3 1 dealby

...

Stack: [] [[0 4 8] [1 5 9] [2 6] [3 7]]

[temp put

 over size * times

 [over [] = iff

 [1 split swap join]

 else

 [swap

 temp share split

 swap rot behead

 rot join

 nested join]]

 temp release] is dealby ([[n n --> [[)

In order to better understand this code we will step through the code for deal, using the shell to see
what is happening. For brevity we will use a short pack of 5 cards, dealing two cards, one at a time, to
three players.

/O> ' [0 1 2 3 4] ' [[] [] []] 2 1

... temp put

...

Stack: [0 1 2 3 4] [[] [] []] 2

The first line just moves the number of cards to be dealt each time to the ancillary stack temp. We will
need to refer to this number in the middle of the dealing loop, and it is convenient not to have it
cluttering up the stack.

/O> over size *

...

Stack: [0 1 2 3 4] [[] [] []] 6

over size * calculates the number of times we need to deal, or attempt to deal, a card from the pack
into a player’s hand. It may seem a little dimwitted to attempt to deal six cards when there are only five
in the pack, but as we will see, it serves a purpose.

In order to step through the loop we will remove the 6 with drop, then skip to the first line within the
times loop.

 of 26 160

over [] = iff looks to see if the ToS (the pack) is empty, without changing the stack. At the
moment the pack is not empty, so we will follow the else branch of the iff.

Stack: [0 1 2 3 4] [[] [] []]

/O> [swap temp share split

... swap rot behead

... rot join

... nested join]

...

Stack:[1 2 3 4] [[] [] [0]]

The first card in the pack, 0, has moved from the pack into a player’s hand. We could step through this
line by line to see the mechanics of the move, but instead we will leave that as an exercise for the reader
and see the next trip around the loop, noting that the pack is still not empty.

/O> [swap temp share split

... swap rot behead

... rot join

... nested join]

...

Stack: [2 3 4] [[] [0] [1]]

The next three trips round the loop yield:

Stack: [3 4] [[0] [1] [2]]

Stack: [4] [[1] [2] [0 3]]

Stack: [] [[2] [0 3] [1 4]]

Each time round the loop, the first player’s hand in the nest of hands (ToS) is moved from the front to
the end of the nest, and the first card in the pack (2oS) is moved to the end of the player’s hand. One
might envisage the player’s hands as arranged on a rotating turntable, with a robot dealer adding a card
from the stack to a hand as it passes beneath it.

After five times around the loop, the pack is empty, and there is one more trip around the loop to
perform, this time taking the first clause of the iff.

/O> [1 split swap join]

...

Stack: [] [[0 3] [1 4] [2]]

This time the players in the nest of players have cycled without having any cards added, moving the
first nest to the end, leaving them in the required order, i.e. with the players who received the extra
cards at the front of the nest. This would correspond to the first hand in the nest being to the left of
the dealer in a real life game, and is the reason for wanting to step through the loop six times rather
than five.

In this example the talon (the remains of the pack, 2oS) is empty.

Mostly we will want to deal one card at a time, so deal gives a simplified notation for doing this.

[1 dealby] is deal ([[n --> [[)

 of 27 160

For example, to deal seven cards to each of four players from a new pack, one would write;

newpack 4 players 7 deal

A few games involve dealing two or more cards at a time. One example of this is Euchre, where five
cards are dealt to each player, as packets of two and three cards. dealeach deals each player a specified
number of cards.

[1 swap dealby] is dealeach ([[n --> [[)

For example, to deal two cards to each player, and then three cards to each player, one would write,
(assuming there is a pack and a nest of hands on the stack);

2 dealeach 3 dealeach

The final dealing word we will define, dealall, simply deals all the cards in the pack, one at a time, to
the players.

[over size deal] is dealall ([[--> [[)

undeal reverses the action of dealing, taking the cards from each player one at a time and returning
them to the pack so that the cards are in the same order as before dealall. It also removes the nest of
players from the stack.

[[] swap

 [behead

 1 split

 dip [swap dip join]

 dup [] = iff

 drop

 else

 [nested join]

 dup [] = until]

 drop swap join] is undeal ([[--> [)

[] swap puts an empty nest under the nest of player’s hands. At the end, swap join will append this
to the pack of cards that undeal expects to find underneath the nest of players’ hands.

The until loop nest removes the first player’s hand from the nest of players’ hands (behead), and the
first card from that hand (1 split) and adds it to the nest placed underneath the nest of players’
hands (dip [swap dip join]). It then checks if the player’s hand is empty (dup [] = iff) and
either discards the empty hand (drop) or adds it to the end of the nest of players’ hands ([nested
join]). It repeats the loop until all the players’ hands have been discarded (dup [] = until).

Once out of the loop, the now empty nest of players hands is discarded (drop) and as noted
previously, swap join adds the cards collected from the players’ hands to any cards that were
previously undealt.

Undealing cards is not a common practice in real life, but undeal can be used in combination with
other words defined in this suite can provide a variety of ways of shuffling cards. 

 of 28 160

divvy takes a different approach to sharing out all the cards to the players. Rather than dealing the
cards one or more at a time, it gives each player all their cards at once.

[over size over size

 tuck /mod

 rot over -

 dip [over 1+ swap of]

 rot swap of

 join

 swap [] 2swap

 witheach

 [split

 unrot nested join

 swap]

 unrot

 witheach

 [dip behead join

 nested join]] is divvy ([[--> [[)

For example, if there are 52 cards in the pack and 5 players, each with an empty hand, the first two
players will receive 11 cards each, and the remaining three will receive 10 cards each. over size over
size puts the number of cards and the number of players on the stack whilst leaving the nest of cards
and the nest of players’ hands on the stack.

tuck /mod rot over - calculates the number of players to receive eleven cards and the number to
receive ten. The number of players remains on the stack. (For the moment we will leave the nest of
cards and the nest of players off the stack and focus on their sizes.)

/O> 52 10 tuck /mod rot over -

...

Stack: 10 2 3

dip [over 1+ swap of] and rot swap of use these numbers to construct two nests. join joins
them together into a nest that describes how the cards should be distributed amongst the players.

/O> dip [over 1+ swap of]

... rot swap of

... join

...

Stack: [11 11 10 10 10]

At this point in the code the stack contains a nest of 52 cards, in order, a nest of five players’ empty
hands, and a description of how the cards should be divided amongst the players. 
 
(In this example, the players’ hands are empty at the start. This is not a prerequisite. Try stepping
though the code after say dealing a couple of cards to each player with newpack 2 dealeach to see
how it handles that.)

Stack: [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50 51] [[] [] [] [] []] [11 11 10 10 10]

 of 29 160

swap [] 2swap reorganises the stack and adds an empty nest into the mix.

Stack: [[] [] [] [] []] [] [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
39 40 41 42 43 44 45 46 47 48 49 50 51] [11 11 10 10 10]

Now the top two items on the stack are the pack of 52 cards and the description of how those cards
should be distributed. witheach [split unrot nested join swap] will distribute the cards
into nests in the empty nest that is now third on stack, leaving the now depleted pack of cards on the
top of the stack.

/O> witheach

... [split

... unrot nested join

... swap]

...

Stack: [[] [] [] [] []] [[0 1 2 3 4 5 6 7 8 9 10] [11 12 13 14
15 16 17 18 19 20 21] [22 23 24 25 26 27 28 29 30 31] [32 33 34 35 36
37 38 39 40 41] [42 43 44 45 46 47 48 49 50 51]] []

witheach removes the nest that is on the ToS, then repeats the thing that follows once for each item
in the nest it removed, putting an item from the nest it removed on the stack at the start of each
repetition. So, with [11 11 10 10 10] on ToS, witheach [split unrot nested join
swap] is equivalent to

11 split unrot nested join swap

11 split unrot nested join swap

10 split unrot nested join swap

10 split unrot nested join swap

10 split unrot nested join swap

As previously, unrot prepares the stack for the upcoming witheach, which joins the nest of divvied
up cards into the nest of players’ hands, leaving the empty pack of cards underneath the nest of
players’ hands.

/O> unrot

... witheach

... [dip behead join

... nested join]

...

Stack: [] [[0 1 2 3 4 5 6 7 8 9 10] [11 12 13 14 15 16 17 18 19 20 21
] [22 23 24 25 26 27 28 29 30 31] [32 33 34 35 36 37 38 39 40 41]
[42 43 44 45 46 47 48 49 50 51]]

We can use newpack, players and divvy to create a pack of cards suitable for playing Euchre by
stripping out some of the cards. Euchre packs have several variations. Here we will create a 25 card
pack, which is Aces, nines, tens, Jacks, Queens, and Kings, and a high ranking joker.

 of 30 160

euchrepack starts with a newpack and uses 4 players divvy to separate it into a nest of nests of
suits. It then uses a witheach clause to remove the twos to eights from each suit (1 split 7 split
nip) and join the remaining cards together, and then join the suit back into the pack. Finally it adds a
high joker to the pack.

[newpack

 4 players divvy

 witheach

 [1 split 7 split

 nip join

 join]

 +highjoker] is euchrepack (--> [)

gather gathers up the cards in a nest of players’ hands and adds them to the pack. It reverses the
action of divvy and removes the nest of players’ hands from the stack.

[[] swap witheach join

 swap join] is gather ([[--> [)

Shuffling a pack of cards is already provide for with the word shuffle. shuffle will thoroughly
randomise a pack of cards, as far as a pseudo-random number generator is able to do this, which makes
it somewhat unrealistic. The shuffling methods employed in real life card games do not lead to all 52
factorial possible reorderings of the pack by a long stretch. This has a material impact on game play, so
we will code a few popular shuffles.

The weave or riffle shuffle, in its most exact incarnation where the pack is divided in two halves and
cards are taken from each half one at a time, is known to mathematicians as the faro shuffle, and is of
interest to card mechanics for one particular mathematical property, the ability to move the top card to
a desired position within the pack by a number of faro shuffles. The faro shuffle comes in two flavours,
the in shuffle and the out shuffle, depending on which half of the pack is selected from first.

faro-out does an out shuffle, faro-in does an in shuffle.

[2 players divvy undeal] is faro-out ([--> [)

[2 players divvy

 1 split swap join

 undeal] is faro-in ([--> [)

faro takes two numbers in addition to a pack of cards (3oS), the 2oS is the number of in and/or out
shuffles to be performed, and the ToS specifies how many cards down the uppermost card in the pack
should have moved once the specified number shuffles have been performed. Note that placing a card
in a specified position requires sufficient shuffles. “Sufficient shuffles” means as many shuffles as
binary digits are required to represent the desired position numerically. Moving a card from the top of
the pack, position 0, to the bottom of the pack, position 51, would require at least six shuffles, as the
decimal number 51 is 110011 in binary. It works by examining the binary representation of the number,
using each successive bit in the number to select either an in shuffle or an out shuffle.

[unrot times

 [over i bit & iff

 faro-in else faro-out]

 nip] is faro ([n n --> [)

Explanations and mathematical analyses of how The Technique (as magicians sometimes call it) works
can be found readily enough on the web.

 of 31 160

A common shuffling method is dealing out the pack to some number of players, then gathering up the
piles of cards.

[players dealall gather] is piles ([n --> [)

piles can be made slightly less deterministic by randomly reordering the piles with shuffle before
gathering them.

[players dealall

 shuffle gather] is mixpiles ([--> [)

The final method of shuffling that we will consider is the imperfect riffle, where sometimes more than
one card slips through the shuffler’s fingers during the weave.

[stack 5] is riffskill (--> [)

The ancillary stack riffskill represents the ability of the shuffler to perform a perfect riffle. This is
“best guess” coding. Without performing a statistical analysis of a large number of real life riffles from
a representative sample of card players, which is beyond the scope of a simple tutorial, there is no way
of knowing how accurate it is. However, a while spent trying out various options suggests that it is
reasonable to assume that a riffskill range of 1 to 10 goes from butterfingered lummox at 1 to near
mastery of the riffle at 10. The default value of 5 appears to provide a reasonably adept shuffler who is
not a card mechanic. (A setting of 0 will provide a perfect riffle every time, with the only random
element being whether an in shuffle or an out shuffle is performed.)

riffle splits the pack into two halves and randomly swaps them on a coin toss (2 random) before
entering a while loop nest, which, while there is one or more cards in the uppermost of the two half
packs, takes a card from that half-pack, adds it to the empty nest placed on the stack in readiness at the
start of riffle and then swaps the half-pack. Once the loop is exited the empty half-pack is dropped
and any remaining cards in the non-empty half are joined to the pack.

[[] swap

 dup size 2 /up split

 2 random if swap

 [dup [] != while

 behead nested

 dip rot join unrot

 riffskill share 1+ random

 1 != if swap

 again]

 drop join] is riffle ([--> [)

Some proportion of the time, determined by riffskill, riffle will fail to swap the two halves,
which is equivalent to letting more than one card slip through the shufflers’ fingers. With a riffskill
of 1, two or more cards will slip through about half the time, three or more cards will slip through a
quarter of the time, four or more cards one eighth of the time and so on. With a riffskill of 2, the
odds are 1:3 for two or more cards, 1:9 for three or more cards, 1:27 for four or more and so on.

Finally, riffles will perform a specified number of riffle shuffles on a pack of cards.

[times riffle] is riffles ([n --> [)

Development of this suite of words could continue indefinitely, but the goal of illustrating string and
nest processing in Quackery has already been more than achieved, so by way of “exercises for the
reader” I suggest the wikipedia article on shuffling, where several more are described, such as the
Overhand, the Mongean and the Mexican spiral.

 of 32 160

 Problem, Problem, Problem

“everyone can master a grief but he that has it”

 Much Ado About Nothing — W. Shakespeare

By now you will probably have encountered some of Quackery’s problem messages, and possibly
managed to crash out of the Quackery shell with a Python error message. Mostly the shell can recover
from problems, but the open and lenient nature of Quackery does mean that it is not practical, (and
quite possibly not even possible) to make it entirely bulletproof.

Problems in Quackery fall into four categories; virtual hardware problems, where the Quackery virtual
processor has been asked to do something it cannot process; compilation problems, where the compiler
encounters badly formed Quackscript; system damage problems, where some aspect of Quackery has
been made non-viable, and pseudo-virtual hardware problems.

Virtual Hardware Problems

Stack unexpectedly empty.

Expected nest on stack.

Expected number on stack.

Return stack unexpectedly empty.

Bailed out of Quackery.

Cannot divide by zero.

Tried to raise to a negative power:

Cannot << by a negative amount:

Cannot >> by a negative amount:

Found a "'" at the end of a nest.

Unexpectedly empty nest.

Cannot peek/poke an item outside a nest.

Cannot remove an immovable item.

Python error:

Quackery was worried by a python.

Stack Problems

Stack unexpectedly empty.

Expected nest on stack.

Expected number on stack.

These are self-evident. You can’t take something from an empty stack. If an operator takes two
arguments, there need to be at least two items on the stack. Similarly you can’t do nest editing
on a number, or arithmetic on a nest.

Return Stack Problems

Return stack unexpectedly empty.

Bailed out of Quackery.

You are unlikely to encounter “Return stack unexpectedly empty.” It is a remnant from
an early phase of the development of Quackery, and remains in the code for the benefit of
anyone seeking to modify the Python code of Quackery, or recode it in a different language. If
you manage to generate this problem purely coding in Quackery, please let me know how.

“Bailed out of Quackery.” can be caused by intemperate use of]bailby[. 

 of 33 160

Arithmetic Problems

Cannot divide by zero.

Tried to raise to a negative power:

Cannot << by a negative amount:

Cannot >> by a negative amount:

These are self-evident. /mod, / and mod are the most likely culprits when it comes to division
by zero.

Raising a number to a negative power would give a non-integer result, and the Quackery virtual
processor only knows about integers.

<< and >> are described in the action Bitwise Logic below. If you require a word that will bit-
shift in either direction, <<>> will give left-shift with a negative n, and right shift with a positive
n.

[dup 0 < iff [negate <<] else >>] is <<>> (f n --> f)

Nest Problems

Found a "'" at the end of a nest.

Cannot peek/poke an item outside a nest.

Unexpectedly empty nest.

Cannot remove an immovable item.

Several operators assume that they are not the last item in a nest. if and else assume there
will be at least one item following them, and iff assumes two items after it. If you do put
them at the end of a nest, however, it is not a problem. They just consume their arguments (in
the case of if and iff) and the Quackery virtual processor realises that the end of the nest
has been reached and continues in its usual fashion. Neither will the compiler complain that
you have done a strange thing, as it is entirely possible that the nest is destined to be joined to
another nest, meaning the words would no longer be at the end of the nest.

“'”, on the other hand, not only assumes another item in the nest, it requires one.

“Cannot peek/poke an item outside a nest.”

peek, poke and pluck require the specified item in a nest to exist. If the nest is not large
enough for that to be true, they will report “Cannot peek/poke an item outside a
nest.”

split and stuff are tolerant of references to positions outside of a nest, and will treat overly
large positive and negative numbers as meaning the end and the start of the nest respectively.

“Unexpectedly empty nest.” will only be encountered if you try to apply take one too
many times to something which is not a stack or a table (or more generally, anything which
has been made immovable). As noted elsewhere, this is not recommended practice as it goes
against the principle that nests should be immutable.

“Cannot remove an immovable item.” will be reported if you try to take one to many
items from an immovable nest, such as a stack or table. The word immovable exists purely
to detect this problem; without it ancillary stack underflow can change the behaviour of a
word in bewildering ways by turning an ancillary stack into a no-op. This was the single most
problematical bug during the development of Quackery. You do not need that grief in your
life. 

 of 34 160

Python Problems

Python error:

Quackery was worried by a python.

These problems can be generated when using the operator python, and are discussed in the
Development Tools section of Word Behaviours.

When a virtual hardware problem is encountered within the Quackery shell, Quackery will attempt a
soft reboot, clearing the return and data stacks, but leaving the dictionary nests and ancillary stacks
unchanged, and reporting the problem along with the contents of the data and return stack
immediately prior to the reboot.

When a virtual hardware problem is encountered while quackery is running a .qky file from the
terminal, Quackery will attempt to report the problem along with the contents of the data and return
stack before handing control back to the terminal.

When a virtual hardware problem is encountered while quackery is being used as a function within a
Python program, it will raise a QuackeryError with a string containing the same diagnostic
information as the two previous circumstances and hand control back to the Python.

Compilation Problems

Unexpected "]".

"is" needs something to name before it.

"is" needs a name after it.

"builds" needs something to name before it.

"builds" needs a name after it.

Unfinished comment.

'Unexpected ")".

"forward" needs a name after it.

"resolves" needs something to resolve.

"resolves" needs a name to resolve into.

Unknown word after “resolves”:

<word> is not an unresolved forward reference.

"char" needs a character after it.

"$" needs to be followed by a string.

Endless string discovered.

"say" needs to be followed by a string.

"hex" needs a number after it.

<word> is not hexadecimal.

Unknown word: <word>

unfinished nest.

These are discussed in the the section The Building Regulations, and in the descriptions of the
building words that follow it.

When a compilation problem is encountered in the Quackery shell, it is reported and the shell
continues as normal. build will restore the dictionary and protected ancillary stacks to their
state prior to invoking build. When a compilation problem is encountered while quackery is
running a .qky file from the terminal, Quackery report the problem and hand control back to
the terminal. When a compilation problem is encountered while while quackery is being used
as a function within a Python program, Quackery will return a string reporting the problem as
the result of evaluating the Quackery function.

 of 35 160

System Damage Problems

System Damage problems are reported when Python raises an exception that is not trapped by
Quackery. Quackery prints “Quackery system damage detected.” to the terminal, followed by the
exception that Python raised, and then forcibly hands control back to the operating system using the
python function sys.exit(1).

Mostly this will be a “maximum recursion depth exceeded” exception, caused by damage to the
dictionaries that significantly impairs the ability of Quackery to report virtual problems, causing a
problem to be detected when reporting a problem.

Note that not all dictionary damage causes this; many types of damage just cause Quackery to behave
weirdly. Entering “' pack take drop” in the shell, for instance, will reverse the order of the items on
the stack every time it is displayed by the shell, amongst other things. Weird behaviour can include an
endless error loop. For instance if the soft reboot succeeds, but the dictionaries are damaged in such a
way that shell causes a virtual hardware problem then that problem will be reported over and over, ad
infinitum. And of course a poorly coded program can get into an endless loop without a problem
being detected. In either instance pressing Control C will terminate Quackery.

Other causes of system damage reports could include an exception being raised by the file handling
words, which would suggest there is a problem not with Quackery but with the file.

Finally, the other Quackery compiler, the one coded in Python, build(), who’s job is to compile the
predefined words in Quackery, does its own error checking for badly formed Quackery. build()’s
problem reports are terser and even less helpful than those generated by the Quackery Quackery
compiler, build.

Again, this is a remnant of the development process, and left in as an aide to future developers. If you
are minded to modify the predefined Quackery words, it is recommended to thoroughly test the new
definitions in the shell first, if possible, using the Quackery Quackery compiler

(Also bear in mind that the full set of building words is not present in the Python Quackery compiler.
Specifically, only is, (,), forward, resolves, char, $ and hex are defined, and the builders
dictionary can only be extended with Python functions, not Quackery words.)

Pseudo-Virtual Hardware Problems

Occasionally, a problem may arise which is technically a compilation problem but cannot reasonably be
detected during compilation. For this reason Quackery has the word fail, which will cause Quackery
to terminate as if a virtual hardware problem had been detected whilst running a program.

The sole example of this is the problem report “Unresolved reference.”

Words are mostly added to Quackery’s vocabulary by specifying a behaviour and then naming it with is
or builds. Sometimes it is desirable to reverse this order of events and name a word with, for example
“forward is example-name” before specifying its behaviour with, for example “[(some
behaviour)] resolves example-name”. This is known as forward referencing.

Using example-word before its behaviour has been specified would be problematical, but treating this
as a compilation problem would be unreasonable, as it could be resolved in a future invocation of the
Quackery compiler. For this reason, the initial behaviour of a word named with forward, until such
time as it is resolved, is to generate a pseudo-virtual hardware problem that reports an unresolved
reference. 

 of 36 160

Extending Quackery

Programming in Quackery is extending Quackery. is and builds add new definitions to the Quackery
dictionaries, increasing its functionality and that of the Quackery compiler respectively. It is also meta-
extensible. The dictionary system is open to extension; words could be added to enable editing the
dictionaries or adding new dictionaries, and new compilers could be defined to introduce, for example,
infix notation for arithmetic expressions.

Python Extensions

Some functionality is outside the scope of Quackery as defined here. It has no graphical or audio
capabilities beyond sounding a system alert on systems that recognise “\a” as the bell character.
Similarly it is ignorant of VT100 escape sequences for giving more control over text output than
treating it as a simple teletype. Nor is it aware of other sorts of I/O, such as via the GPIO on a
Raspberry Pi, to give just one example. 
 
This out-of-scope functionality can be added to Quackery by editing the Python 3 source code. With a
little familiarity with the Python language this should mostly be a straightforward task, consisting of
importing any relevant Python libraries and adding new operators to Quackery, following the pattern
of the existing operators; fail through to sharefile.

1. Add a new Python function to the section of code containing the existing operator functions,
bearing in mind that operator functions need to  

• Check that any necessary arguments are on the stack and retrieve them. 

• If necessary, convert the arguments from Quackery data types, i.e numbers and nests (which
are Python ints and lists) into the required Python data types. 

• Execute whatever Python functions are required. 

• If necessary, handle any error conditions that may arise. 

• If necessary, convert any results from Python data types into Quackery data types. 

• Push any results onto the stack. 

2. New Quackery operators need to be added to the Python operators dictionary, the Quackery nest
of strings called namenest, and the Quackery table called actions.

The order of words in the Quackery data structures is not important, but is is imperative that they both
have the same order.

Quackery Libraries

The Python dictionaries can be extended from a file by use of “$ ‘my-file-name.qky' loadfile,
where my-file-name is the name of a text file of Quackery code (Quackscript).

loadfile has functionality to prevent a file from being loaded twice, so a file of Quackscript which is
to be treated as a library can be loaded from other Quackscript files without unnecessary duplication.
Specifically, loadfile will look for a word called my-file-name.qky, and ignore the request to load
and compile that file if it finds that word in namenest.

 of 37 160

To enable this functionality, a file of Quackscript that is to be treated as a library should start with the
definition;

[this] is my-file-name.qky

(Any definition would suffice. Using “[this]” is a convention, not a requirement.)

To load a library called “my-library.qky” within another file use;

[$ 'my-library.qky' loadfile] now!

(Using now! will ensure that the definitions in my-library.qky are compiled immediately and hence
available to definitions within the file that loaded it.)

The Quackery shell looks for a file called extensions.qky in the same directory as quackery.py and
automatically loads it during startup, if it exists, and announces it is doing so by printing “Building
extensions.” after “Welcome to Quackery.” By default extensions are switched off by the
expedient of the supplied extensions file being named “extensionsX.qky”. To enable this
functionality, edit the name of the file by removing the X. The supplied extensions file loads the library
bigrat.qky, described below, and redefines sortwith, sort and sort$ to use a better sorting
algorithm (merge sort rather than insertion sort) without changing the functionality of those words.

Extending Quackery by adding definitions to the “predefined” string in quackery.py is possible,
and will compile faster as the Python Quackery compiler runs significantly faster than the compiler
defined in Quackery. However the Python Quackery compiler is not extensible, so some compiler
extensions (for example, say) will not be available, and any problematic code will cause Python to
forcibly exit with even less helpful diagnostics than those provided by the Quackery Quackery
compiler. If you must do it, develop your code in the shell, which uses the Quackery Quackery
compiler, before editing it into to the predefined string.

As with new operators, new definitions need to be added to the the Quackery nest of strings called
namenest, and the Quackery table called actions, or, for words that extend the Quackery Quackery
compiler, to the nest of strings called buildernest, and the table called jobs.

Functionality available in Python but not Quackery can be added using the operator python, which is
described at length in the Development Tools section of Word Behaviours.

The Vulgar Arithmetic Library

The Vulgar Arithmetic Library, bigrat.qky, short for (bignums rational”) adds rational arithmetic
words (aka vulgar fractions) to the Quackery dictionary.

It can be loaded into the Quackery shell either by entering $ 'bigrat.qky' loadfile, or
automatically at startup by renaming the file called “extensionsX.qky” as “extensions.qky”.

To load it within a Quackery file use [$ 'bigrat.qky' loadfile] now!.

The words it adds are;

2put gcd reduce sqrt

v+ -v v- v* 1/v v/ n->v proper improper vabs v0= v0< v< overflow vsqrt
round approx= $->v vulgar$ proper$ +zero -zeroes -point point$

v.cf v.initcf v.nextcf v.numers v.nextnumer v.getnumer v.denoms
v.nextdenom v.getdenom 

 of 38 160

2put (a b c -->)

2put moves the stack items a and b to the ancillary stack c, keeping b above a.

1 2 temp 2put is equivalent to swap temp put temp put.

The converse operation 2take can be defined as

[dup take swap take swap] is 2take (c --> a b)

if required.

Rational numbers are represented by two numbers on the stack, with the numerator as second on stack
and the denominator as top of stack. So the vulgar fraction would be 3 4. 2put adds the
convenience of moving a rational number to an ancillary stack as a single step. Negative fractions, such
as are represented by making the numerator a negative number; -5 3. The denominator of a

rational number is always positive. A rational number with a denominator of zero, e.g. represents an
arithmetic overflow condition. This is discussed in the word overflow, below.

gcd (a b --> c)

gcd returns the greatest common divisor c, of the numbers a and b. It uses Euclid’s algorithm,
noteworthy for being one of the oldest algorithms in common usage. Here it is used by the
word reduce.

reduce (a/b --> c/d)

reduce takes a rational number a/b and reduces it to its simplest terms, c/d. For example, the
fraction would be reduced to . Rational numbers in Quackery are always represented in
their simplest terms.

sqrt (a --> b c)

sqrt takes a number a, and returns its integer square root, b and remainder, c.

For example, the integer square root of 25 is 5 with a remainder of 0, as 25 is a perfect square
- i.e. (5*5)+0 = 25. The integer square root of 29 is 5 remainder 4, as (5*5)+4 = 29.

If a is a negative number, b will be 0 and c will be the same as a.

sqrt uses the quadratic residue method described here:

rosettacode.org/wiki/Isqrt_(integer_square_root)_of_X

v+ (a/b c/d --> e/f)

v+ takes two rational numbers, a/b and c/d (i.e. four items on the stack, a, b, c, and d) and
returns their sum, i.e. e/f is equal to .

-v (a/b --> -a/b)

-v negates a rational number, a/b (i.e. multiplies it by -1).

3
4

−
5
3

1
0

25
100

1
4

a
b

+
c
d

 of 39 160

http://rosettacode.org/wiki/Isqrt_(integer_square_root)_of_X

v- (a/b c/d --> e/f)

v- takes two rational numbers, a/b and c/d and returns e/f, equal to .

v* (a/b c/d --> e/f)

v+ returns the product of a/b and c/d, i.e. e/f is equal to .

1/v (a/b --> b/a)

1/v returns the reciprocal of a/b, i.e. if a/b is , 1/v returns .

v/ (a/b c/d --> e/f)

v+ returns a/b divided by c/d, i.e. e/f is equal to .

n->v (a --> a/1)

n->v converts a whole number, a, to its rational number representation, .

Vulgar fractions in Quackery are “improper fractions”, which is to say that the numerator can be larger
than the denominator, e.g. , which is equal to . Sometimes it is desirable to separate the whole
number part of an improper fraction from the fractional part. The word proper does this.

proper (a/b --> c d/e)

proper takes a rational number a/b and returns the number c, and the rational number d/e,
where d/e is greater than or equal to zero, and less than one, and .

There is a “gotcha” to watch out for here. If a/b is negative, the result may not be what you
anticipate. for instance -7 3 proper will return -3 2 3 (i.e. minus-three plus two-thirds), and
not -2 1 3 (i.e. minus two-and-a-third,) which would be the usual way of saying as a
proper fraction. This is done for consistency with the behaviour of other arithmetic operators
in Quackery.

The word proper$, below, which converts a rational number to a string for output as a proper
fraction, operates the way you would expect, and will convert -7 3 to the string “-2 1/3”.

improper (a b/c --> d/e)

improper is the converse of proper. It takes a proper fraction in the form produced by
proper and converts it to its improper representation.

vabs (a/b --> e/f)

vabs takes a rational number, a/b and returns its absolute value e/f (i.e. if a/b is negative, it
negates it.)

v0= (a/b --> c)

v0= returns 1 (true) if the rational number a/b is equal to zero, and 0 (false) otherwise.

a
b

−
c
d

a
b

×
c
d

−
3
2

−
2
3

a
b

÷
c
d

a
1

7
3

2 +
1
3

c +
d
e

=
a
b

−
7
3

 of 40 160

v0< (a/b --> c)

v0< returns 1 (true) if the rational number a/b is less than zero, and 0 (false) otherwise.

v< (a/b c/d --> e)

v< returns 1 (true) if the rational number a/b is less than the rational number c/d, and 0
(false) otherwise.

overflow (a/b --> c)

overflow returns 1 (true) if the rational number a/b is equal to the overflow condition, and 0
(false) otherwise.

The reciprocal of zero, which is represented by the rational number , is the overflow

condition; , also known as Undefined or Not a Number (NaN). If you call it “infinity” a
mathematician will give you a stern look, and possibly a lecture.

The reciprocal of the overflow condition is the overflow condition, not zero, and more
generally, the overflow condition will propagate through a program once it occurs, just as NaN
will propagate through a spreadsheet and be displayed as a result on-screen.

vsqrt (a/b c --> d/e f)

vsqrt takes a rational number a/b, and a number c specifying the desired precision of the
result, and returns its square root as the rational number d/e. The boolean f indicates whether
the result is exact or an approximation.

As not all rational numbers have a rational square root, the number c specifies the precision to
which the square root should be calculated, expressed as the number of decimal digits to be
displayed after the decimal point, if the result were displayed as a decimal number.

(This is assuming that the current base is 10 (decimal). If, for example, the current base is 16
(hexadecimal) c specified the number of hexadecimal digits after the hexadecimal point.)

If the square root of a/b is a rational number and can be expressed exactly within the
precision specified by c, the boolean f will be 1 (true), indicating that the result is exact,
otherwise it will be 0 (false), indicating that the answer is an approximation.

If a/b is the overflow condition, then d/e will be the overflow condition and f will be 1
(true).

If a/b is negative, then d/e will be the overflow condition and e will be 0 (false).

Even without introducing approximations to irrational numbers, vulgar fractions have the drawback
that when performing a large number of calculations the size of the numerators and denominators will
tend to increase. For example, the sum is equal to .

/O> 1 2 1 3 v+ 1 5 v+ 1 7 v+ 1 11 v+ 1 13 v+

...

Stack: 40361 30030

0
1

1
0

1
2

+
1
3

+
1
5

+
1
7

+
1

11
+

1
13

40361
30030

 of 41 160

This is not particularly useful if the answer you really want is “approximately ”, and unchecked
growth can lead to very slow computations, and potentially running out of memory.

Schools, in my experience, circumnavigate this problem by switching to teaching decimal fractions, and
encourage pupils to tap the sum into a pocket calculator and announce that the answer is
“approximately 1.344022644”. To be fair, approximating decimal fractions is trivial; “truncate and
round off the last digit” and approximating rational numbers is somewhat cumbersome, but
significantly less so than, say, long division, and easily demonstrated with a pocket calculator,
particularly if it is equipped with a button and a button.

My calculator displays pi as 3.141592653589793, i.e. . Note down the whole number
part, 3, subtract it from 3.141592653589793 and find the reciprocal () of 0.141592653589793. It is
7.062513305931046. Note down the whole number part, 7, subtract it from 7.062513305931046 and
find the reciprocal. It is 15.99659440668572. Note down the whole number part, 15, subtract it from
15.99659440668572 and find the reciprocal. Repeat this process a couple more times, until you have
noted down 3, 7, 15, 1, 292. (Technically, these are the first five terms of the continued fraction of pi,
but you don’t need to know that to do the method.)

The first term, 3, is the Biblical approximation to pi. (1 Kings 7:23 KJV; “And he made a molten sea, ten
cubits from the one brim to the other: it was round all about, and his height was five cubits: and a line
of thirty cubits did compass it round about.”)

The first two terms, 3 and 7, give us the best known reasonable approximation, , arrived at by taking

the reciprocal of the second term, 7; and adding 3 to it.

To get Milü (the approximation of pi discovered by Zǔ Chōngzhī, born 429 AD); , we need to
repeat the process of taking the reciprocal and adding (i.e. reversing the process of finding the
continued fraction) starting with the fourth term, 1. The reciprocal of 1 is 1 () Adding the third term,

15 to this gives and the reciprocal is . Adding 7 gives , and the reciprocal is . Finally,

adding 3 give us Milü, . This is approximately equal to 3.1415929204, which is a very respectable
approximation of pi, being accurate to six decimal places.

This method can be turned into a useful computer algorithm by generating successive approximations
at the same time as generating the continued fraction, rather than generating the continued fraction first
and then trying different starting points until you find one that gives the desired size of numerator and
denominator. (Starting with the fifth term, 292, would yield an approximation of , so we can

comfortably say that is the best approximation with a denominator smaller than 30000.)

Rather than go into fine detail about the algorithm, (Mediant Rounding, from D. E. Knuth’s The Art of
Computer Programming, Vol 2, Seminumerical Algorithms, 4.5.3, Analysis of Euclid’s Algorithm,
exercise 40) I present the reverse-engineered notes I referred to while coding it, below. It is essentially
calculating two Fibonacci sequences simultaneously, one starting with 0 1 and the other starting with 1
0, and multiplying by the next term of the continued fraction at each step.

The relationship to the Fibonacci sequence becomes more apparent when calculating phi, the golden
ratio, which is approximated by successive pairs of numbers in the Fibonacci sequence, and whose
continued fraction is an endless sequence of 1s. This, incidentally, is the worst case instance of the
algorithm, where the size of the numbers in successive approximations increases most slowly.

4
3

π 1/x

3141592653589793
1000000000000000

1/x

22
7

1
7

355
113

1
1

16
1

1
16

113
16

16
113

355
113

103993
33102

355
113

 of 42 160

continued fraction of pi starts: 3 7 15 1 292

approximations to pi: 3/1 22/7 333/106 355/113 103993/33102

numerators 3 22 333 355 103993

denominators 1 7 106 113 33102

cf 3 7 15 1 292

numers 0 1 3 22 333 355 103993

 0

 1 0

 3 = 1 * 3 + 0

 22 = 3 * 7 + 1

 333 = 22 * 15 + 3

 355 = 333 * 1 + 22

103993 = 355 * 292 + 333

 cf 3 7 15 1 292

denoms 1 0 1 7 106 113 33102

 1

 0 1

 1 = 0 * 3 + 1

 7 = 1 * 7 + 0

 106 = 7 * 15 + 1

 113 = 106 * 1 + 7

 33102 = 113 * 292 + 106

round (a/b c --> d/e)

round takes a rational number a/b and a number c, and returns a rational number d/e which
is the closest approximation to a/b such that the numerator and denominator are both smaller
(closer to zero) than c.

approx= (a/b c/d e --> f)

approx= compares the rational number a/b to the rational number c/d and returns true if
the difference between them is less than , where is the number e, and is the number on
the top of the ancillary stack base, and false otherwise.

In other words, if the current base is decimal and e is 3, a/b and c/d are approximately equal
if they are equal when rounded to three places after the decimal point, as .

$->v (a --> b/c d)

$->v attempts to convert a string a representing a number expressed in decimal point notation
in the current base to a rational number. If the conversion succeeds, the number will be
returned as b/c and the boolean d will be true. Otherwise b/d will be as much of the string
as it was able to convert, and d will be false.

vulgar$ (a/b --> c)

vulgar$ takes a rational number a/b and returns a string of that number expressed as a
vulgar fraction, e.g -7 5 vulgar$ echo$ will print “-7/5”.

x−y x y

10−3 = 0.001

 of 43 160

proper$ (a/b --> c)

proper$ takes a rational number a/b and returns a string of that number expressed as a
proper fraction, e.g -7 5 proper$ echo$ will print “-1 2/5”.

The next three words, +zero, -zeroes, and -point, are factored out of point$, below, for clarity of
code, and because they may conceivably be of use.

+zero (a --> b)

+zero takes a string a, and returns it as string b with a zero “0” prepended to it if the first
character is a decimal point “.”.

-zeroes (a --> b)

-zeroes takes a string a and returns it as string b with all trailing zeroes removed, unless that
means that the final character in the string will be a decimal point, in which case it leaves one
trailing zero.

-point (a --> b)

-point takes a string a and returns it as string b with the trailing decimal point removed, if it
had one.

point$ (a/b c --> d)

proper$ takes a rational number a/b and a number, c, and returns a string of a/b expressed
in decimal point notation (dependant on the current base), with up to c digits after the decimal
point. The final digit is rounded up if there are more digits available and the next one is 5 or
more. (Or generally, half of the current value on the ancillary stack base.)

For example, assuming base is 10, -15 7 10 point$ echo$ will print “-2.1428571429”.

The remaining words in the library, v.cf, v.initcf, v.nextcf, v.numers, v.nextnumer,
v.getnumer, v.denoms, v.nextdenom, and v.getdenom are used by round and, as indicated by the
use of the dotted naming convention, (i.e. v.xyz) should be considered private to the library and left
well alone.

As with any arithmetic system that involves approximation, care should be taken to mitigate against
rounding errors. While Knuth makes the passing observation in Semi-Numerical Algorithms that
rational numbers approximated using the mediant rounding scheme show a tendency for rounding
errors to cancel out, I have not found any definitive research confirming this supposition as fact. So,
despite Professor Knuth’s standing, it would be foolish to rely on an “appeal to authority” argument.

As a rule of thumb for casual use of the library, I suggest working to a couple of digits higher
precision than you intend to print out, and, if you are using numbers with large integer parts, separating
them from the fractional part using proper before approximating the fractional part with round, and
rejoining the two parts with improper afterwards. This will mitigate against loss of accuracy in the
fractional part when the integer part is large, and against the the possibility of generating the overflow
condition when the size of the integer part exceeds the specified size limit. 

 of 44 160

 [this] is bigrat.qky (BIGnum RATional -- vulgar arithmetic)

 [rot over put put] is 2put (n n [-->)

 [[dup while

 tuck mod again]

 drop abs] is gcd (n n --> n)

 [2dup gcd tuck / dip /] is reduce (n/d --> n/d)

 [1

 [2dup < not while

 2 << again]

 0

 [over 1 > while

 dip [2 >> 2dup -]

 dup 1 >> unrot -

 dup 0 < iff drop

 else

 [2swap nip

 rot over +]

 again] nip swap] is sqrt (n --> n n)

 [rot 2dup *

 dip [rot * dip * +]

 reduce] is v+ (n/d n/d --> n/d)

 [dip negate] is -v (n/d --> n/d)

 [-v v+] is v- (n/d n/d --> n/d)

 [dip abs] is vabs (n/d --> n/d)

 [dup if

 [swap dup 0 <

 if [negate -v]]] is 1/v (n/d --> n/d)

 [rot * dip * reduce] is v* (n/d n/d --> n/d)

 [over iff

 [1/v v*] done

 2drop 2drop 1 0] is v/ (n/d n/d --> n/d)

 [1] is n->v (n --> n/d)

 [tuck /mod rot reduce] is proper (n/d --> n n/d)

 [rot n->v v+] is improper (n n/d --> n/d)

 [drop 0 =] is v0= (n/d --> b)

 [drop 0 <] is v0< (n/d --> b)

 [v- v0<] is v< (n/d n/d --> b)

 [nip 0 =] is overflow (n/d --> b)

 of 45 160

 [over 0 = iff

 [drop true] done

 base share swap **

 tuck * dip * tuck *

 sqrt 0 = dip

 [swap reduce]] is vsqrt (n/d n --> n/d b) (note 1)

 [stack 0 0] is v.cf (--> [)

 [v.cf release

 v.cf replace

 v.cf put] is v.initcf (n/d -->)

 [v.cf take v.cf take

 tuck dup if [/mod rot]

 v.cf 2put] is v.nextcf (--> n)

 [stack 0 1] is v.numers (--> [) (note 2)

 [v.numers take tuck *

 v.numers take + dup

 unrot v.numers 2put] is v.nextnumer (n --> n)

 [v.numers release

 v.numers take

 0 1 v.numers 2put] is v.getnumer (--> n)

 [stack 1 0] is v.denoms (--> [)

 [v.denoms take tuck *

 v.denoms take + dup

 unrot v.denoms 2put] is v.nextdenom (n --> n)

 [v.denoms release

 v.denoms take

 1 0 v.denoms 2put] is v.getdenom (--> n)

 [temp put

 2dup v0= iff

 [temp release 2drop

 0 n->v] done

 2dup v0< not iff (note 3)

 [-v ' -v]

 else []

 unrot v.initcf

 [v.nextcf

 dup 0 = dip

 [dup v.nextnumer abs

 swap v.nextdenom

 max temp share >]

 or until]

 v.getnumer v.getdenom

 rot do temp release] is round (n/d n --> n/d)

 of 46 160

 [temp put v-

 2dup v0= iff

 [temp release

 2drop true] done

 vabs proper rot iff

 [temp release

 2drop false] done

 base share

 temp take **

 n->v 1/v v<] is approx= (n/d n/d n --> b)

 [char . over find split

 dup $ '' != if

 [behead drop]

 dup size

 base share swap **

 unrot join $->n

 dip [swap reduce]] is $->v ($ --> n/d b)

 [2dup overflow iff

 [2drop

 $ "overflow"] done

 reduce number$

 dip

 [number$

 char / join] join] is vulgar$ (n/d --> $)

 [2dup overflow iff

 [2drop

 $ "overflow"] done

 2dup v0< dip

 [vabs proper

 rot number$]

 if [char - swap join]

 unrot 2dup v0= iff

 [2drop]

 else

 [vulgar$ space

 swap join join]

 2 split over $ "0 " =

 iff nip done

 join

 3 split over $ "-0 " =

 if [nip char - swap]

 join] is proper$ (n/d --> $)

 [behead dup char . =

 if [char 0 swap join]

 swap join] is +zero ($ --> $)

 [dup size 1 - times

 [-1 split

 dup $ '0' = iff drop

 else

 [join

 conclude]]] is -zeroes ($ --> $)

 [-1 split dup $ "." =

 iff drop else join] is -point ($ --> $)

 of 47 160

 of 48 160

 [unrot 2dup overflow iff (note 4)

 [2drop drop

 $ "overflow"] done

 rot dup 0 = dip

 [unrot 2dup v0<

 dip

 [vabs

 2dup < dup dip

 [if [1 1 v+]

 rot dup dip

 [base share

 dup dip

 [swap 1+ **

 rot * swap /]

 tuck 2 / + swap /

 number$]]

 if [char 0 rot 0 poke swap]

 negate split

 char . swap join join]]

 rot swap

 iff [1 split nip]

 else [+zero -zeroes -point]

 swap if

 [dup $ "0" != if

 [char - swap

 join]]] is point$ (n/d n --> $)

Notes.

1. ^ sqrt only uses sqrt once, because . 

2. ^ v.numers through to v.getnumer and v.denoms through to v.getdenom are unashamedly
copy-paste coding, in that the routines to generate successive numerators are identical to the
routines to generate successive denominators, apart from referencing the ancillary stacks v.numers
and v.denoms respectively, and re-initialising them to 0 1 and 1 0 at the ends of v.getnumer and
v.getdenom. The ancillary stack references could have been arguments to a generalised version of
v.nextnumer and v.nextdenom at the cost of increased stack management. For just two instances
I felt the cost was not justified. 

3. ^ 2dup v0< iff 
 [-v ' -v] 
else [] 
... 
... do 
 
Division and remainder in Quackery round to negative infinity. Mediant rounding requires routines
that round away from zero. To achieve this, positive numbers are temporarily converted to negative
numbers by negating them, and them restoring them to positive numbers once the rounding has
been performed. Rather than leaving a boolean on the stack and putting another test later, either -v
or [] (which is equivalent to “do nothing”) is left on the stack for do to do.  

4. ^ Coded from the middle outwards, by dealing with the simple case – a positive number greater
than or equal to one with a decimal point required and no trailing zeroes, then wrapping it in code
to deal with each exception to the simple case, thoroughly testing at each stage. It makes for
somewhat complicated code, but then, the way humans like to see decimal point numbers
presented is somewhat complicated to define precisely. As the old saw goes, “This job would be
great if it wasn’t for the customers.” 

x
y

=
x
y

=
x y

y
=

x y

y

 of 49 160

Sorting and Searching

Quackery was conceived when I learned that a data structure that combines the functionality of a
Queue and a Stack is sometimes referred to by the portmanteau Quack, which amused me. Soon after
learning this, it occurred to me that this could be the basis of a programming language, as the Quack
embodies two fundamental characteristics of programming; sequential performance of instructions,
and nesting of subroutines. A circularly linked list satisfied the requirement of being able to act as a
Quack, and after some consideration it grew to be two circularly linked lists, a body containing data
and/or code, and a smaller head containing metadata, the head and body being joined by a link that I
named the neck. The name Quackery flowed naturally from these considerations. I knew from the start
that in a genealogy of programming languages it would be a child of both Forth and Lisp, and the
name had some self-effacing humour; I imagined that someone encountering the language without
some experience of its forebears might cry out “But this is Quackery!”, and they would be correct.

After settling on Python 3 as the implementation language I realised that the built in Python data
structure it calls a list (actually a dynamic array) also met the criteria and removed the need to create the
data structure described above and the low level code required to manage it from scratch. And so the
Quack, with its head and body was superseded by the nest as the basis of Quackery, the stacks
remained as stacks in the very specific computer science meaning of the term, but only an echo of the
queues remained as sequential compilation and execution.

Other early design decisions included the non-inclusion of Go To, even at the virtual machine level,
(see “Go To Statement Considered Harmful” by Edsger Dijkstra, March 1968.) The immutability of
nests (i.e. the idea that nests cannot be modified, only created and destroyed) came from Lisp, and a
limited relaxation of this principle for ancillary stacks allowed Quackery to work without variables. (See
“Global Variable Considered Harmful” by William Wulf & Mary Shaw, February 1973.)

In this chapter we will first test the viability of making nests immutable by implementing a couple of
in-place sorts, the Gnome Sort, a recent classic, which should probably be the first sort algorithm
taught, on account of its simplicity, and a heap sort, mostly because it uses priority queues, thereby
reintroducing queues in their strict computer science sense to Quackery. After that we will create a
string search algorithm that relies heavily on the Go To statement in its most spaghetti-codifying
incarnation, which I first encountered in various incarnations of Microsoft BASIC as ON x GOTO. This
was also the source of the word poke, which will be the used in the sort algorithms, and will be our
means of turning immutability on and off for comparisons.

In the next chapter, Quackery is Not Forwards Lisp, we will consider the possibility of restricting
branching within nests even further.

 
Gnome Sort

Gnome Sort is possibly the simplest sorting algorithm to describe, and is very suitable as a first sorting
algorithm, so if you have not coded one before I suggest you read the description and try it out before
proceeding to the next page. The words peek and poke will be needed, and are described in the
comprehensive Word Behaviour section below, under the subheading Nest Editing. As a hint, you
might also look at times and step under the Control Flow subheading. This description is from the
Wikipedia Gnome Sort page at en.wikipedia.org/wiki/Gnome_sort.

Gnome Sort is based on the technique used by the standard Dutch Garden Gnome.

Here is how a garden gnome sorts a line of flower pots.

Basically, he looks at the flower pot next to him and the previous one; if they are in the right order he
steps one pot forward, otherwise, he swaps them and steps one pot backward.

Boundary conditions: if there is no previous pot, he steps forwards; if there is no pot next to him, he is
done.

— "Gnome Sort - The Simplest Sort Algorithm". Dickgrune.com

 of 50 160

http://en.wikipedia.org/wiki/Gnome_sort

Here is a coding of Gnome Sort to sort a nest of numbers into numerical order, (and hence to sort the
characters in a string into Unicode order) along with a quick test to establish that it works.

/O> [dup size times

... [i^ 0 > if

... [dup i^ 1 - peek

... over i^ peek

... 2dup > iff

... [dip [swap i^ poke]

... swap i^ 1 - poke

... -1 step]

... else 2drop]]] is gnomesort ([--> [)

...

Stack empty.

/O> $ 'who knows why the wind blows' gnomesort echo$

...

 bdehhhiklnnooosstwwwwwy

Stack empty.

The key word here is poke, which occurs twice within the times looping structure, and which we will
take to be typical usage. poke takes its name from Applesoft BASIC (and other dialects of rebadged
Microsoft BASIC prevalent in home computers of the late 1970s and early 1980s), where I first
encountered it. It overwrote a specified address in memory with a specified 8-bit number.

In Quackery the idea of the computer memory (RAM) as a single array of memory locations is
abstracted into nests, which can be seen as multiple arrays of memory locations. The Quackery poke
takes three arguments, the item (a number, nest, or operator) that will replace the contents of one of
these memory locations, the nest which is to be modified, and a number specifying the memory
location within that nest. And, as nests are immutable, it does not actually change the contents of the
nest. Instead it returns a copy of the entire nest, with the relevant location modified.

This sounds terribly inefficient. Imagine sorting the contents of a large nest, and making two copies of
the nest every time it goes around the loop and meets the necessary condition to exchange two items.
Especially with an already inefficient algorithm such as Gnome Sort, which can make many more trips
around the loop than are strictly necessary.

We can put this to the test. Is this inefficiency a major factor, a deal breaker for immutability?

As it happens, poke is not used at all in the predefined or core words of Quackery, so we can modify
its functionality, making it a word that modifies a nest rather than creating a copy, without affecting the
way any other part of Quackery works.

The Python 3 definition of poke includes the line “nest = from_stack().copy()”, with the suffix
“.copy()” forcing poke to have the the immutability property. Removing that suffix will mean that
poke does not return a copy of the nest passed to it as an argument, but the same nest, modified.

If you wish to test this for yourself by running some timing comparisons, the word time returns the
number of microseconds since the Unix epoch. (It is not reliable to the microsecond, it does this so it
can provide an unpredictable seed for Quackery’s pseudo-random number generator. The Python 3
documentation only guarantees accuracy to the nearest second, but in all probability using it to make
measurements to the thousandth of a second for casual purposes should be fine.

time (code-you-are-timing) time swap - 1000 / echo say " milliseconds”

In tests I have conducted, there has been only a marginal improvement of between 1 and 2 percent.

 of 51 160

Without understanding the inner workings of the Python interpreter in detail, it is wise to view this
conclusion with some scepticism, and perhaps conduct a different test that does not assume
that .copy() always forces a copy of the nest to be made. There are possible optimisations that mean
it need only make a copy when it has to, and if there is only a single reference to the nest passed to
poke it could get away with modifying the nest whilst keeping the appearance of immutability.

Heap Sort

Heap Sort uses a nearly balanced binary tree as a priority queue represented as a heap, which is an
nearly balanced binary tree in a nest. Let’s break that down. The code for the heap sort can be found in
the folder sundry, in the file heapsort.qky.

A priority queue is what you use in a triage situation, dealing with things as they arrive, not in the order
that they arrive, but prioritising them in order of urgency. For the sake of this illustration, we will say
that smaller numbers are “more urgent” than larger numbers.

This is an nearly balanced binary tree in which the higher up the tree you are, the “more urgent” the
numbers are, with the “most urgent” (i.e. smallest) number at the top. You can make and maintain a
nearly balanced binary tree by add new nodes in the order indicated by the grey numbers adjacent to
the nodes, and removing nodes in the reverse order.

It is a min heap, because each node has a smaller number in it than the nodes below it that it is
connected to (the node’s children). We say it satisfies the min heap condition. A max heap would be the
same except the number in a node would be larger than those of its children.

The key takeaways from this diagram are; 

1. That by knowing the size of the nest and the position of a given node within the nest we can
calculate whether it has a parent node, and the position of the parent node in the nest, and whether
it has zero, one, or two children, and the positions of the left and right child in the nest, with simple
arithmetic operations (doubling, halving, adding and subtracting one) and comparisons (greater
than and less than). This will allow us to move from node to node. 

2. If we remove the zeroth item in the nest or add an item to the end of the nest it will no longer
satisfy the heap condition, and will need to be corrected.

 of 52 160

88

72 59

44 66 30 16

14 38 25

0

1 2

3 4 5 6

7 8 9

88 72 59 44 66 30 14 38 2516[[
0 1 2 3 4 5 6 7 8 9

A preliminary coding of the priority queue routines turned out to be quite stack intensive, leading to an
unnecessary amount of stack management words. So we will relieve the stack pressure by storing the
priority queue on an ancillary stack called pq and define routine specific versions of peek and poke.

 [stack] is pq ([--> [)

 [pq share swap peek] is pq.peek (n --> x)

 [pq take swap poke pq put] is pq.poke (n x -->)

With that taken care of, we can define the relationships between nodes of the binary tree.

To move from a node to its parent, add one, divide by two and subtract one.

 [1+ 2 / 1 -] is parent (n --> n)

Every node has a parent except for the one in position 0.

 [0 >] is has-parent (n --> b)

To move from a node to its left child, double and add one.

 [2 * 1+] is child (n --> n)

A node has a child if that child is within the nest.

 [child pq share size <] is has-child (n --> b)

To move from a left node to its sibling right node, add one.

 [1+] is sibling (n --> n)

Every left node has a sibling if that node is within the nest.

 [sibling pq share size <] is has-sibling (n --> b)

To make the priority queue routines general purpose, we will specify the test for “more urgent” at run
time, by putting it on an ancillary stack called comparison, and performing that test with pq.compare.
For example, the appropriate comparison for a min heap of numbers where smaller numbers are
“more urgent” than larger ones is >, which will return true if the top of stack is “more urgent” than
the second on stack.

 [stack] is comparison ([--> [)

 [comparison share do] is pq.compare (x x --> b)

 
Before moving on to the heap management words, you may have spotted an obvious optimisation in
Gnome Sort. When moving a flower pot towards the start of the row of flower pots, he repeatedly
exchanges a flower pot with its neighbour. It would have required less effort to pull the chosen flower
pot forward and then slide flower pots to the right until there is a gap where the pulled-forward pot is
destined to end up. We did not make that optimisation for the gnome sort, but for the heap we will be
creating a space and then moving it up or down the binary tree, much as one moves the empty space
around in the classic 15 Puzzle.

Note this if you augment these notes with other tutorials (a good idea), and also note that most use an
array that starts with the first element, rather than the zeroth, so the arithmetic will differ slightly. 

 of 53 160

toheap – We can add an element, x, to a heap, h, by joining it to the end of the heap and then
restoring the heap property by walking the element up the binary tree until we encounter a parent node
that is more urgent than it, or we get to the top of the tree, which does not have a parent node.

 [over size

 rot 0 join pq put

 [dup has-parent while

 dup parent

 rot over pq.peek

 2dup pq.compare iff

 [2swap unrot pq.poke]

 again

 rot 2drop swap]

 pq.poke pq take] is toheap (h x --> h)

fromheap – We can remove the zeroth element from a heap, h, by noting its contents and replacing it
with the last element of the heap, then walking it down the tree much as toheap walks n item up the
tree, with the added complication that when moving downwards one has to choose between the two
siblings if a node has two children. We choose the more urgent one.

The process of restoring the heap condition in this manner does not just work with the zeroth element
– if the heap condition is satisfied for all the descendants of any given node, n, the process, known as
“heapify” can be applied starting at n. As it will be used in the word makeheap this part of fromheap
has been factored out into the word pq.heapify, the pq. portion of the name indicating that it
expects to find the heap on which it will act on the ancillary stack pq.

 [dup pq.peek swap

 [dup has-child while

 dup child

 dup has-sibling if

 [dup sibling pq.peek

 over pq.peek

 pq.compare if sibling]

 dip over dup pq.peek

 rot dip dup pq.compare iff

 [rot pq.poke]

 again

 2drop]

 pq.poke] is pq.heapify (n -->)

 [behead

 over [] = if done

 swap -1 split

 swap join pq put

 0 pq.heapify

 pq take swap] is fromheap (h --> h v)

comparison, toheap and fromheap provide all the functionality of a priority queue. The remaining
words, makeheap, hsortwith and hsort use the priority queue functionality to implement an efficient
sorting mechanism. However, it should be noted that heap sorts are not stable. (If two elements have
the same value, their relative order is not preserved. This can be important if you want to sort a nest of
data structures that can be sorted in more than one way – e.g. some records that have both an
alphabetic ordering and a date ordering. One might want that sorting the records into alphabetic order
and then sorting the result by day would maintain the alphabetic order of records within each day.

Quackery is equipped with a stable insertion sort suitable for sorting small nests, and loading
extensions.qky improves on this with a stable merge sort for longer nests that falls back to insertion
sort for nests with sixteen or fewer items.

 of 54 160

makeheap heapifies an unsorted nest. Note that pq.heapify need only be applied to the upper half of
the binary tree, as nodes which have no children automatically satisfy the heap condition. This is the
first step in the two step heap sort process. makeheap assumes that the ancillary stack comparison has
been loaded with a suitable test for urgency.

 [dup pq put

 size 2 / times

 [i pq.heapify]

 pq take] is makeheap ([--> h)

The second step in the heap sort process is to remove every item from the priority queue in order of
priority by repeatedly calling fromheap and appending the items it returns to a nest.

hsortwith will sort a nest using the comparison that follows it in the Quackery code. It uses]'[to
provide this syntactic sugaring and give it the same usage as the provided word sortwith.

 []'[comparison put

 [] swap makeheap

 dup size times

 [fromheap

 nested rot join

 swap]

 drop

 comparison release] is hsortwith ([--> [)

hsort illustrates the usage of hsortwith and sorts a nest of numbers into ascending order. Usage is
the same as the provided word sort.

 [hsortwith >] is hsort ([--> [)

/O> [] 10 times [90 random 10 + join]

... cr dup echo cr hsort echo cr

...

[97 93 85 73 35 44 75 98 28 58]

[28 35 44 58 73 75 85 93 97 98]

Stack empty.

Returning to the topic of the possible inefficiency of immutable nests, the definition of pq.poke can
be changed from

[pq take swap poke pq put] is pq.poke (n x -->)

to

[pq share swap poke pq replace] is pq.poke (n x -->)

without changing its functionality. The latter version ensures that poke does copy the nest passed to it.
Comparative timings sorting large nests again show a change in how long it takes to sort a large nest of
numbers with hsort on the order of two or three percent. That there is only a small change suggests
that possibly it does not copy the entire nest, but instead records only the differences, the “deltas”,
between the original and the new version. Again, without delving deep into the implementation details
of Python 3 and PyPy3, this is uncertain. However it does reassure us that it is not an overwhelming
factor. There are plenty of small optimisations possible in the implementation presented here which, if
all applied could make it run significantly faster. However I feel this is not necessary in its intended role
as a recreational programming language, and at odds with its ambitions as an educational language. 

 of 55 160

Finite Automata String Search

While it is generally accepted that goto statements can lead to unstructured programs that are difficult
to debug and hard to maintain there are use cases that are best served by unstructured code. An
extreme example of this is in coding Finite State Automata, machines that were in use long before
computing was invented. We will look first at the example of a mechanical vending machine.  
 
One stage in the process of designing a vending machine is to consider what coins may be fed into it
before it vends, say, a chocolate bar. We will start with a specification that chocolate bars cost eighty
pence, that the machine can accept ten, twenty and fifty pence coins, and that when it receives exactly
eighty pence it will vend a chocolate bar, but if that amount is exceeded without ever being exactly
eighty pence it will return the coins and not vend a chocolate bar.

From this specification we can draw a state table which will help when designing the mechanism. The
machine starts in the initial state, state 0, where it is awaiting 80 pence. Depending on the value of
the first coin it receives, it will move to one of three other states, where it is awaiting 70, 60, or 50
pence. From whichever state it is in it can move to one of three other states, again depending on the
value of the next coin it receives. There are eight possible states where it is awaiting further coins,
namely awaiting 80, 70, 60, 50, 40, 30, 20, or 10 pence, which we will call states 0 to 7, the success
state S!, where it has received exactly 80 pence and will vend a chocolate bar, and the failure state, f!
where it has received more than 80 pence and will return the coins received. Once it has reached and
acted on states S! or f! it returns to state 0.

 coin received: 10 20 50

state 0 - awaiting 80p s1 s2 s5

state 1 - awaiting 70p s2 s3 s6

state 2 - awaiting 60p s3 s4 s7

state 3 - awaiting 50p s4 s5 S!

state 4 - awaiting 40p s5 s6 f!

state 5 - awaiting 30p s6 s7 f!

state 6 - awaiting 20p s7 S! f!

state 7 - awaiting 10p S! f! f!

Say a customer puts a 20 pence coin, a 10 pence coin and a 50 pence coin into the machine, in that
order. The machine is initially in state 0. Reading from the state table we can see from the state 0 row
that the 20 pence coin will cause the machine to enter state 2, from the state 2 row that the 10 pence
coin will cause the machine to enter state 3, and from the state 3 row that the 50 pence coin will
cause the machine to enter the success state, S!, and vend a chocolate bar before returning to state 0.
Hurrah!

The Infinite Monkey Theorem states that, given a typewriter and all eternity, a monkey will, at some
point, recreate the entire works of William Shakespeare.

As we do not have that long, we will address the Finite Monkey Puzzle, which asks, if a monkey
equipped with a faulty typewriter, such that it can only type the letters A, B, N, and R types a single
page of text, what is the probability that it will reference the Beach Boys by typing BARBARAANN
somewhere in that page?

Rather than answer that question, we will create the state table for a machine capable of recognising the
sequence of letters BARBARAANN when it is fed one letter at a time from the page typed by our
monkey, much as the chocolate bar vending machine can recognise a sequence of coins totalling eighty
pence.

(In passing I note that this apparently silly task is equivalent to the more serious task of searching the
human genome for a specified sequence of nucleotides, so has a beneficial real-world application.) 

 of 56 160

This will bring us quite close to coding a string search algorithm, with the main difference that rather
than having an alphabet of four characters, we will use the 95 characters that Quackery recognises.

For this state table we will use a nest of Quackery nests as this is the format we plan to use in the code;

 ('A' 'B' 'N' 'R')

[[0 1 0 0] (state 0 - waiting for 'B')

 [2 1 0 0] (state 1 - waiting for 'A')

 [0 1 0 3] (state 2 - waiting for 'R')

 [0 4 0 0] (state 3 - waiting for 'B')

 [5 1 0 0] (state 4 - waiting for 'A')

 [0 1 0 6] (state 5 - waiting for 'R')

 [7 4 0 0] (state 6 - waiting for 'A')

 [8 1 0 0] (state 7 - waiting for 'A')

 [0 1 9 0] (state 8 - waiting for 'N')

 [0 1 -10 0]] (state 9 - waiting for 'N')

The success state in this state table is indicated by a negative number, -10. This will be a useful choice
when we come to write the code. (I know this because, having already actually written the code, I have
the gift of hindsight.)

Of particular interest is the column for the letter 'B'. If a B is received when it is not the letter that the
state machine is waiting for, it mostly it jumps back to state 1 rather than state 0 as other undesired
letters do. This is because the undesired letter may well be the first letter of the sequence we are
looking for, whereas an undesired 'A', 'N', or 'R' is definitely not the first letter of BARBARAANN. The
exception is state 6, where an undesired B causes a jump back to state 4. This is because when we reach
state 6 we know that the previous six letters were BARBAR, so this B could be the fourth letter in
BARBARAANN. To confirm this is correct, try following the sequence of letters B A R B A R B A R A
A N N through the state table as we followed the sequence of coins 20 10 50 through the state table
in the first example.

Also note that there is no failure state indicated in this table. This is because in this example failure
would consist of running out of letters to feed to the state machine before reaching the success state.
We will test for this separately in the code.

A string search routine that only looks for the sequence “BARBARAANN” is of limited utility, and I would
not want to hand-craft a state table every time I wanted to search for a different substring. Full
disclosure – I didn’t hand-craft the state tables above, instead I adapted them from the output of a
routine coded in Quackery that takes a string and returns a state table. This is the first part of the string
search algorithm. The second part is a routine that takes a string to search and a state table and acts as a
state machine, moving from state to state according to the sequence of characters in the string until it
reaches the success state or runs out of characters (the failure state). It returns the number of
characters it had to process before reaching a success or failure state. 
 
The two routines are, in essence, a compiler (the first routine) that takes a textual description of a
problem (the string to be matched) and produces a chunk of code (the state table) that can be acted on
by a processor (the second routine) to reach a success or failure state. This indicates the position of the
string to be matched within the string to be searched. (In common with find and findseq the failure
state is represented by returning the length of the string to be searched, so found can be used to test
for failure.This is a remarkably powerful programming technique, and the basis of the Unix tool grep,
which compiles complex state tables from regular expressions to match patterns within strings. The
code presented here is a first step in developing a grep in Quackery. It is almost sufficiently powerful
to qualify as a full-blown programming language, being just a hair shy of Turing equivalent.
(Technically, this is a deterministic state machine – it will always either succeed or fail. Turing equivalence
requires non-determinism; the possibility that one could present it with a program that will not be able to
determine success or failure and hence run forever. 

 of 57 160

In Finite State Machine terminology, the set of possible input events is called an alphabet. In this
instance the alphabet is the set of printable characters and space. For the purposes of the string
search, carriage return will be treated as equivalent to the space character. We start by creating a nest of
all the characters Quackery recognises so that we can step through them one at a time when required.
The word constant ensures that the nest is created only once, at compile time.

 [[] 95 times

 [i^ space +

 join]] constant is alphabet (--> $)

(constant could also have been used in the card dealing routine newpack, earlier, in case you had
wondered about something like that at the time. The reason it wasn’t is that I had yet to define the word
constant when that chapter was written.)

In order to construct a state table, we will need to consider all the possibilities. We will look at one
element of the finite money state table in detail, the one where we have reached state 6, and the next
character in the string we are searching in is B.

 ('A' 'B' 'N' 'R')

...

...

...

 [7 4 0 0] (state 6 - waiting for 'A')

As we have reached state 6 we know that the previous six characters in the string we are searching in
were BARBAR, and appending a B will give us BARBARB, which is seven characters long. We will compare
this to the first seven characters of the string we are searching for, BARBARA.

BARBARB

BARBARA

This is not a match, so we clip one character off the start of BARBARB, and one character off the end
of BARBARA, and compare again.

BARBARB

 BARBARA

Again this is not a match, so we repeat the process.

BARBARB

 BARBARA

Again this is not a match, so we repeat the process..

BARBARB

 BARBARA

Now we have a match of four characters, so the number we need to record in the state table at that
point is 4, the number of characters by which the two strings overlap.

 [[2dup != while

 -1 split drop

 swap 1 split

 unrot drop again]

 drop size] is overlap ($ $ --> n)

 of 58 160

The next word, eachend, takes the string matched so far, plus the next character that we are hoping to
find, (i.e. for the sixth row of the state table, “BARBARA”) and also the total length of the of the string
we are searching for, n, (i.e. for “BARBARAANN”, n equals 10. It calls overlap with, for example,
“BARBARA”, on the top of stack, and the same string with each possible end character substituted into
“BARBARA”, i.e. “BARBARA”, “BARBARB”, “BARBARN”, and “BARBARR” second on stack. (Except with
every character in alphabet, not just A, B, R, and N.)

The number returned by overlap is compared to the total length of the string we are searching for (in
the example, 10) and if necessary, the returned number is negated, as a means of indicating that a
match for the string has been found, so the success state has been achieved.

 [temp put [] swap

 alphabet witheach

 [over -1 poke

 over overlap

 dup temp share

 = if negate

 swap dip join]

 drop temp release] is eachend ($ n --> [)

buildfsm builds the state table for the Finite State Machine by calling eachend for as many lines of
the state table as there are characters in the string being searched for.

 [[] swap

 dup temp put

 size times

 [temp share

 i 1+ split drop

 temp share size eachend

 nested swap join]

 temp release] is buildfsm ($ --> [)

nextcharn takes a string, and returns -1 and an empty string if the string passed to it is empty,
otherwise it returns the position in alphabet of the first character in the string (remembering that the
carriage return character is treated as equivalent to the space character), and the string passed to it with
the first character removed.)

nextcharn is used to feed the finite state machine processor usefsm with successive characters from
the string being searched in, and to indicate to it that the failure state has been achieved if there are no
characters left in the string.

 [dup [] = iff -1

 else

 [behead

 dup carriage = if

 [drop space]

 space -]

 swap] is nextcharn ($ --> n $)

 of 59 160

usefsm is the processor for the Finite State Machine. It takes the string to be searched and a
state table, and moves from line to line in the state table as determined by successive characters
from the string, until either it runs out of characters to process (the failure state) or achieves
the success state.

It returns the starting position of the first instance of the string being searched for (as
encoded in the state table) in the string being searched in, if it has been found, or the length of
the string being searched in if there were no instances of the string being searched for.

 [swap dup size

 swap temp put

 swap 0

 [over swap peek

 temp take

 nextcharn

 temp put

 dup 0 < iff

 [2drop 0] done

 peek

 dup 0 < until]

 nip

 temp take size - +] is usefsm ($ [--> n)

find$ takes a string to be searched for, (the substring) from which it will build a state table,
and then use it to to search within the string on the top of the stack, returning the position of
the substring within the string, or the negate of the string, if the substring is not present. First,
however, it checks to see if the substring is the empty string, as that would crash the finite state
machine. We could cause Quackery to crash with a suitable problem report using fail if the
substring is empty, but as it is not an entirely unreasonable thing to ask (like asking Quackery
to divide by zero) instead we will return a result of 0. (It is reasonable to assert that there is an
empty string at the start of every string, as any-string 0 split will return an empty string
and any-string.)

 [over [] = iff

 [2drop 0]

 else

 [swap buildfsm

 usefsm]] is find$ ($ $ --> n)

buildfsm, with its nested loops, is a relatively slow process, but when the string being
searched is very large, and the string being searched for is short and the alphabet used is quite
small, that is a small price to pay for the benefit of usefsm only looking at each character once.
In find$ buildfsm is used every time find$ is used, but in a word that finds not just the first
instance of the substring, but every instance, buildfsm need be only used once, further
reducing its overhead. The code for the finite state machine can be found in the folder sundry,
in the file fsm.qky.

This brings us to the end of our excursion into the world of sorting and searching. In the next
chapter we will ask, if we do not require GOTO, what other control flow words can we do
without?

After that final plunge into “Computer Science Quackery Style”, (a reference to the rather
excellent book Computer Science Logo Style, by Brian Harvey: people.eecs.berkeley.edu/~bh)
it is possible, that the rest of this document, which describes every word in the Quackery
lexicon, (and looks in some detail at several of them, with examples of usage), and then
presents the entire code for Quackery, implemented in Python 3 and Quackery, will seem like a
walk in the park by comparison. 

 of 60 160

http://people.eecs.berkeley.edu/~bh

Quackery is Not Forwards Lisp

In this section we will ask the rhetorical question, What if Quackery didn’t have the control flow words
introduced in the section Control Flow Words, namely again, done, if, iff, else, until and while;
could we manage without them? 
 
It’s an intriguing proposition. In the section The Other Stack we established that running a Quackery
program consists of proceeding from left to right, through a nest, using the return stack to keep track
of nested nests. In Control Flow Words this simple rule was weakened, by making it “usually, proceed
from left to right” and then introducing some ways to break that rule by skipping over items and
jumping to the start and end of a nest, proving a simple but powerful and flexible set of control flow
words.

How this is achieved, and how additional control flow words can be created using the “meta control
flow operators” is covered the appropriate part of Word Behaviours, below, but for now we will
mention briefly that done is not, as you might suspect, an operator, but a nest, and it is defined as
[]done[] is done.

]done[(pronounced “meta-done”) is one of the meta-control flow operators. As you will recall in
Control Flow Words, nesting causes the the item number and nest pointer of the nest currently being
traversed to be moved to the return stack.]done[removes them from the return stack.

This idea, of operating indirectly on the pointers in the Quackery virtual processor by use of the meta
control flow words, along with the ideas that this section covers, will be used in Behaviour of Words to
explain the behaviour of words such as times and witheach, which proved so useful in the preceding
section, Dealing With Quackery.

Control flow boils down to two ideas, selection and repetition. We can use ' and do along with peek to
select between two courses of action…

/O> true ' [[say "the top of stack was 'false'" cr]

... [say "the top of stack was 'true'" cr]]

... swap peek do

...

the top of stack was ‘true'

Stack empty.

/O> false ' [[say "the top of stack was 'false'" cr]

... [say "the top of stack was 'true'" cr]]

... swap peek do

...

the top of stack was ‘false'

Stack empty.

This code takes advantage of the fact that the logical values false and true are represented in
Quackery as 0 and 1 respectively, and that peek returns the nth item in a nest, with item numbers
starting at 0.

It is a little odd that the 0th item in the nest is the “false” option, and the 1st item the “true” option,
but that can be reversed with the word not, which turns true into false and vice versa.

 of 61 160

With this refinement, we can now define a word to select between two options as;

[swap not peek do] is 'ifelse (b [-->)

and demonstrate that it is functionally equivalent to ... iff ... else ...;

/O> [' [[say "true" cr]

... [say "false" cr]]

... 'ifelse] is test1 (b -->)

...

Stack empty.

/O> [iff [say "true" cr]

... else [say "false" cr]] is test2 (b -->)

Stack empty.

/O> 2 2 = test1

... 2 2 = test2

... 2 3 = test1

... 2 3 = test2

...

true

true

false

false

Stack empty.

Now that we have 'ifelse, we can define 'if by noting that “if [say "true"]” is equivalent to
“iff [say "true"] else [(do nothing)]”.

[nested

 ' [[]] join

 'ifelse] is 'if (b x -->)

If x is the nest “[say "true"]”, then 'if turns it into “[[say “true"] []]” and
'ifelse selects between “[say "true"]” and “[]”.

/O> [stack 4] is lights

... lights share 4 = ' [say "There are four lights." cr] 'if

...

There are four lights.

Stack empty.

/O> lights share 5 = ' [say "There are four lights." cr] 'if

...

Stack empty.

The next stage is to achieve repetition without using again to jump back to the start of a nest by
building nests that include themselves as an item. Imagine a model village. There is one near where I
live called Bekonscot, the first such scale model ever built, portraying aspects of life in 1930s England.
It has the usual items you would find in a such a scale model, all a twelfth of the size of their real life
counterparts; a high street with a church and a pub, a train station, a cricket pitch, and, of course, a
model village, specifically, a model of Bekonscot. It includes itself. Inside the model of Bekonscot are
all the items you find in Bekonscot, at 1:144 scale, including of course, Bekonscot.

 of 62 160

Nests do not need to include themselves quite that literally. They just need to be able to refer to
themselves, just as they can refer to other nests by name, using their entries in the names and actions
dictionary.

The word this is what a nest calls itself. It’s behaviour is “Put a pointer to this nest on the stack.”

/O> [[10 random echo cr] this]

...

3

Stack: [[10 random echo cr] this]

/O> do

...

9

Stack: [[10 random echo cr] this]

/O> do

...

4

Stack: [[10 random echo cr] this]

… and as long as we keep entering do, the same thing will keep happening. It’s the basis of an endless
loop, which we will call 'forever - all we have to do is build a nest with “this do” at the end.

As with 'if, we will start the definition with nested, not only for consistency, but because the nest it
finds on the stack could have words like while and done in it, which rely on the end of the nest not
having stuff arbitrarily added to it, as they jump right to the end of the nest, wherever it is.

 [nested

 ' [this do]

 join do] is 'forever (x -->)

We can test 'forever with something like ' [10 random echo cr] 'forever and watch a
stream of random numbers scroll rapidly up the screen. (The cr may be necessary, depending on your
system. On my Mac text isn’t echoed to the screen until there is a carriage return or some internal
buffer is filled, which can take a while. In Pythonista on my iPad text is echoed immediately.) Press
Control C to break out of this endless loop. 
 
But… there is a potential problem which will be revealed with more thorough testing. Replacing “10
random” with the development tool nestdepth (which shows how much is on the return stack at any
given time) will show that it is increasing by one with every repeat. So 'forever should really be called
'keepgoinguntilyourunoutofmemoryforthereturnstack, which isn’t ideal unless your system
has infinite memory. We can fix this by including the meta control flow word]done[, which, as noted
above, removes a nest pointer and item number from the return stack. nestdepth counts this pair as
one thing. (The technical term for this fix is “tail-call optimisation”.)

[nested

 ' []done[

 this do]

 join do] is 'forever (x -->)

“' [... ...] 'forever” is much like “[... ... again]”. We can develop this into a word
much like “[... ... until]” by noting that 'if is a conditional version of do – it does the thing
on the top of stack, but only if the second on stack is true.

 of 63 160

As a first pass we could try;

[nested

 ' [this 'if]

 join do] is 'until (x -->)

It’s close, but not quite there. Testing shows that the logic is reversed, we need a not before this 'if,
and as before the return stack fills up rapidly. Worse than with 'forever in fact – this time it increases
by three each time on account of the extra nesting that 'if wraps around its argument, so we would
need]done[]done[]done[to fix it. As it happens, there is another meta control word,]bailby[,
which allows us to say that a little more tersely, as 3]bailby[.

Almost there. The return stack depth increases by three every time… except for the first time. Uh-huh.
This we can fix by adding some extra nesting around the do, leaving us with a finished version of;

[nested

 ' [3]bailby[

 not this

 'if]

 join

 [[do]]] is 'until (x -->)

Testing this shows it now works as desired.

/O> ' [nestdepth echo sp

... 4 random dup echo cr

... 0 =] 'until

... say " finished"

10 3

10 1

10 0 finished

The return stack depth is constant at 10, it repeats until 4 random returns a 0, and we can see that it
doesn’t remove too many return stack items at the end, because say " finished" works just fine.

Having completed 'until we can move on to 'while, which, as you may suspect, will be equivalent to
[... ... while again].

The nest passed to 'until takes the form [(do some actions and then leave a boolean on
the stack)], which we can abbreviate to [actions test]. With 'while the test comes before
the action, and we need to separate the actions from the test, so the nest passed to 'while will take the
form [[actions] [test]], much like the nest passed to ‘ifelse.

'until does actions test actions test repeatedly, stopping when test returns true, so the
actions are done at least once. 'while differs in that actions might not be done at all. So we will start
by doing test, and if that returns true, then we will do actions test actions test repeatedly
until test returns true. Stepping through ‘while as left as an exercise for the reader, to consolidate
your understanding of the ideas presented in this section.

 [dup dip [1 peek do]

 swap

 ' [[nested

 ' not join

 'until]

 [drop]]

 'ifelse] is 'while ([-->)

 of 64 160

We have one final exercise before we draw some conclusion from all of this, and that will be to use
'while to create an equivalent to times. times is an all-singing, all-dancing word that comes with
extras such as i and i^. We will forego those extras here, although it would not be too hard an exercise
to add them if you wished. The idea is to build a nest to pass to 'while where the test portion checks
if a countdown has reached 0, and decrements it.

[stack] is 't.countdown (--> [)

[swap 't.countdown put

 nested

 ' ['t.countdown share

 0 >

 -1 't.countdown tally]

 nested join

 'while

 't.countdown release] is 'times (n x -->)

Testing…

/O> 3 ' [say "It works! "] 'times

... 0 ' [say "This should not print at all."] 'times

...

It works! It works! It works!

Stack empty.

Or... you could just use the existing definition of times and circumnavigate the syntactic sugaring, like
this:

[' [times] swap nested join do] is 'times (n [-->)

This will have the same behaviour as the preceding definition of ‘times, and be compatible with the
all the extras, like i and i^.

Conclusion.

Quackery is a hybrid language; mostly it falls into the category of functional languages, of which the
original was Common Lisp.

The use of a stack, which gives Quackery a Reverse Polish notation, and its control flow words, which
are procedural in nature rather than functional, come from Forth, the original concatenative language.

More recent concatenative languages, such as Joy and Factor, eschew the Forth control flow style in
favour of a system much more like that presented here, making them more purely functional languages,
albeit with a reverse Polish notation.

My personal preference is for the Forth inspired control flow words, but if you prefer the style
presented in this section, then by all means use it. Or use both. Each has its strengths. if, iff, else,
again, done et cetera, are truly mix and match, and where a control structure calls for multiple exit
points, they can be created quickly and easily. Their functional equivalents are less flexible in that
respect, but having their tests and actions on the stack rather than embedding them within a nest during
coding allows for an entirely different sort of flexibility. And both word sets can be extended to create
new control flow words.

If nothing else, having followed this through will give you a basis for understanding some of the
deepest and most bewildering (at least for me) ideas in computer science, those of the lambda calculus
in general and the Y-Combinator in particular, should you encounter them. 

 of 65 160

 What’s in a Name?

A summary of some of the key points of Quackery, in preparation for describing every word in detail.

A Quackery word is a sequence of printable characters that occurs in either the builders & jobs
dictionary or the names & actions dictionary. Quackery words are names for Quackery objects, of
which there are three types: numbers, operators, and nests. The builders & jobs dictionary contains
the names of words that the Quackery compiler, build, uses to do various jobs during compilation,
and the names & actions dictionary contains all the rest. The builders are:

[] is builds () forward resolves char $ say hex now! constant

Numbers are used to represent information, either by their numerical value or by association with some
other type of information. For example, 1 and 0 are used to represent the Boolean logical values true
and false, and in text strings numbers indicate letters, digits, punctuation marks and suchlike.

Operators correspond to “opcodes”, the computer operations that process information; adding
numbers, manipulating the stack, and so on. There are 55 operators in Quackery that provide basic
functionality and an interface to the external world via the screen, keyboard and text files. Their names
are:

python fail nand = > 1+ + negate * /mod ** << >> & | ^ ~ time stacksize
nestdepth return dup drop swap rot over]done[]again[]if[]iff[]else[

]’[]this[]do[]bailby[put immovable take [] split join find poke peek
size nest? number? operator? quid emit ding input putfile releasefile
sharefile

(It should be noted that this selection is to some extent arbitrary, and different sets of operators could
function equally well.) 
 
Nests provide structure to Quackery. A nest is a sequence of zero or more words, numbers and nests.,
enclosed in brackets; []. They are how Quackery represents composite data and sequences of
instructions for the Quackery processor to perform. The processor functions by traversing a nest from
left to right. When the processor encounters a number it puts that number on the stack, when it
encounters an operator it performs that operation, and when it encounters a nest, it traverses that nest
before continuing in the nest it was previously traversing. When it gets to the end of the first nest it
started traversing, the program ends. The meta control flow operators (i.e. those with names that are
reverse bracketed:]…[) are used to modify the order of traversal.

Programming in Quackery consists of extending the language by adding new words to the language,
and creating sequences of instructions for the processor to traverse. For example,

[dup 1+ *] is sum-of-evens (n --> sum_of_first_n_even_numbers)

6 sum-of-evens echo

adds the word sum-of-evens to Quackery, and then uses it to calculate the sum of the first 6 even
numbers and print the result on the screen. 

 of 66 160

Words, Numbers, and Nests

	 Words

A Quackery word is a sequence of printable characters that occurs in either the builders &
jobs dictionary or the names & actions dictionary.

	 Numbers

Numbers in Quackery are a sequence of digits, optionally preceded by a minus sign. Numbers
are integers, and decimal by default. The behaviour of a number is to put its value on the stack.

	 Nests

A nest is a sequence of zero or more words, numbers, and nests, separated by whitespace
characters (spaces and carriage returns) that starts with the word [and ends with the word] .

p68 	 Stack Management Words

dup drop swap rot unrot over nip tuck 2dup 2drop 2swap 2over pack unpack
dip dip.hold

p70 	 Arithmetic Words

1+ + negate abs - * ** /mod / mod

p71 	 Comparison Words

= oats != < > min max clamp within $< $>

p75 	 Boolean Logic Words

true false not and nand or xor

p76 	 Bitwise Logic Words

~ & | ^ << >> bit 64bits 64bitmask rot64

p79 	 Pseudorandom Number Words

random randomise shuffle

prng prng.a prng.b prng.c prng.d initrandom

p80 	 Ancillary Stack Words

stack put take release share replace move tally temp base decimal
filepath

p82 	 Control Flow Words

done again if iff else until while

]done[]again[]if[]iff[]else[]do[]'[]this[

' do this table

recurse decurse depth

times i i^ step refresh conclude

times.start times.count times.action

 of 67 160

p89 	 Character and String Words

space carriage upper lower printable qacsfot digit char->n number$ $->n
trim nextword nest$

p92 	 Nest Editing Words

[] nested join split size peek poke pluck stuff behead of reverse reflect
copy makewith witheach with.hold

p96 	 Searching and Sorting Words

matchitem findwith find findseq found sortwith sort sort$

match.test match.nest sort.test

p99 	 User Input and Output Words

input sp cr emit echo$ wrap$ echo ding

p101 	 File Management Words

putfile takefile sharefile releasefile replacefile loadfile

p102 	 Exception Handling Words

protect backup]bailby[bail bailed message

history backupwords restorewords releasewords

protected fail

p105 	 To-do Stack Words

to-do new-do add-to now-do do-now not-do

p106 	 Internal Representation Words

quid operator? number? nest? name? named? builder? immovable

p108 	 Dictionary Words

names actions builders jobs namenest actiontable buildernest jobtable	

p110 	 Building Words

build quackery [] is builds forward resolves char $ say constant hex
now! () unbuild quackify unresolved nesting b.nesting b.to-do

p119 	 Time Words

time

p120 	 Development Tool Words

empty words shell leave stacksize echostack nestdepth return return$
echoreturn python

 of 68 160

Word Behaviours

Stack Management

dup drop swap rot unrot over nip tuck 2dup 2drop 2swap 2over pack unpack
dip dip.hold

dup (a --> a a)

dup duplicates the ToS (top of stack), a. a can be a number, a word or a nest (as with all stack
management words, unless otherwise stated.)

As with all words that require items on the stack, if there are too few items on the stack the
processor will crash, reporting that the stack is unexpectedly empty.

drop (a -->)

drop removes the ToS from the stack.

swap (a b --> b a)

swap exchanges the two uppermost items on the stack.

rot (a b c --> b c a)

The 3oS (3rd on Stack), a, is brought to the ToS and the upper two items move down the stack
correspondingly.

unrot (a b c --> c a b)

The converse operation to rot. ToS is moved down to 3oS, 3oS and 2oS move up the stack
accordingly. unrot is equivalent to rot rot, and similarly, unrot unrot is equivalent to rot.

over (a b --> a b a)

over places a duplicate of the 2oS, a, on the ToS. It is equivalent to swap dup unrot.

nip (a b --> b)

nip removes the 2oS a, from the stack. It is equivalent to swap drop.

tuck (a b --> b a b)

tuck puts a duplicate of the ToS, b, underneath the 2oS. It is equivalent to dup unrot.

2dup (a b --> a b a b)

2dup puts duplicates of the 2oS and ToS, a and b, on the stack. It is equivalent to over over.

2drop (a b -->)

2drop removes the ToS and 2oS from the stack. It is equivalent to drop drop.

2swap (a b c d --> c d a b)

2drop exchanges ToS and 2oS with the third and fourth items on the stack.

 of 69 160

2over (a b c d --> a b c d a b)

2drop places duplicates of the 3oS and 4oS on the stack.

pack (* a --> [*])

pack expects a number, a, on ToS, and that number of items on the stack beneath a. It
replaces those items with a nest containing them. For example, if the stack contains

12 13 14 15

then

4 pack

will cause the stack to contain the nest

[12 13 14 15]

If a is zero or a negative number, pack will put an empty nest, [], on the stack.

unpack (a --> *)

unpack expects a nest a, on the ToS. It removes the items from the nest, onto the stack. For
example, if a is [12 13 14 15] then unpack will put 12 13 14 15 on the stack.

dip (a --> a)

dip temporarily moves the ToS, a, out of the way, performs the item following it, and then
returns the ToS to the stack. In the illustrative shell dialogue below, empty empties the stack.

/O> 1 99 dip dup

...

Stack: 1 1 99

/O> empty 1 2 3 99 dip [swap rot]

...

Stack: 3 2 1 99

/O> empty 1 2 3 99 dip [+ +]

...

Stack: 6 99

Note that (for example) dip dip swap will cause Quackery to crash. For “double dipping”,
make the second dip and the item that follows it into a single item by putting them in a nest:

/O> 1 2 88 99 dip [dip swap]

...

Stack: 2 1 88 99

dip.hold (--> a)

dip.hold is the ancillary stack (see Ancillary Stack words, below) to which dip temporarily
moves the ToS.

 of 70 160

Arithmetic

1+ + negate abs - * ** /mod / mod

(The arithmetic words expect numbers on the stack unless otherwise stated.)

1+ (a --> b)

1+ adds 1 to the ToS.

+ (a b --> c)

c equals a plus b.

negate (a --> b)

b equals a multiplied by -1.

abs (a --> b)

b is the absolute value of a. (i.e. if a is less than zero, negate it.)

- (a b --> c)

c equals a minus b.

* (a b --> c)

c equals a multiplied by b.

** (a b --> c)

** is the exponentiation operator. Not to be confused with ^, which in Quackery is a bitwise
logic operator.

c equals a raised to the power b. b cannot be a negative number.

/mod (a b --> c d)

/mod is division with remainder as taught at primary school, also known as Euclidian Division.
"a divided by b equals c remainder d”. (Forth programmers should note that it does not return
the results in the same order as Forth does.)

For example, 42 divided by 10 = 4 remainder 2.

The behaviour of /mod with negative numbers is known as “floor division”. Technically, it
rounds towards negative infinity.

So -42 10 /mod will put -5 8 on the stack, not -4 2 as might be expected. The rationale for
this behaviour is that a can be consistently recreated by multiplying c by b and adding d, so

, whereas . 
 
Similarly, 42 -10 /mod returns -5 -8, and ,

and -42 -10 /mod returns 4 -2, and .

(−5 * 10) + 8 = − 42 (−4 * 10) + 2 = − 38

(−5 * −10) + −8 = 42
(4 * −10) + −2 = − 42

 of 71 160

/ (a b --> c)

/ is equivalent to /mod drop, so a divided by b equals c.

mod (a b --> c)

mod is equivalent to /mod nip, so a mod b equals c. (mod is short for “modulo”, computerese
for “remainder after division by”.)

Comparison

= oats != < > min max clamp within $< $>

= (a b --> c)

= takes two things from the stack, a and b, and leaves 1 (i.e. true) on the stack if they are
equivalent, and 0 (i.e. false) otherwise. Numbers are equivalent if they are the same number.
42 is always equivalent to 42, and never equivalent to 23. Similarly for operators, over is
always equivalent to over, and never equivalent to rot, or to [swap dup rot swap],
despite this nest having the same behaviour as over. Pointing this out may seem overly
pedantic, but it is a necessary preamble to discussing equivalency of words and nests.

If you put the word rot and the nest [unrot unrot] on the stack by using “'” to “quote”
them (described in the Control Flow words, below) and then apply = to them, thus;

' rot ' [unrot unrot] =

the stack will have 0 (i.e false) on it, because although rot and [unrot unrot] do the
same thing, rot is the name of an operator, and an operator is never equivalent to a nest.

However, if you put the word unrot and the nest [rot rot] on the stack and apply = to
them, thus;

' unrot ' [rot rot] =

the stack will have 1 (i.e true) on it, because unrot is defined with:

[rot rot] is unrot

So unrot is the name of a nest containing two rots, and is therefore equivalent to another
nest containing two rots.

However, the shell will show unrot on the stack as unrot, but will show the nest [rot
rot] as [rot rot], apparently different, despite their equivalence. Most of the time this
distinction is unimportant. Nonetheless confusion can arise occasionally, which brings us to
oats.

 of 72 160

oats (a b --> c)

oats takes two things from the stack, a and b, and leaves 1 (i.e. true) on the stack if they are
one and the same, and 0 (i.e. false) otherwise.

In the movie The Matrix, there is a scene where Neo sees a cat walk past a doorway, twice. It
was important that he decide whether he saw two identical cats, one after the other, or the
same cat twice. The Quackery word = would not be sufficient for this tasks but oats would.

If we use dup, over, tuck or 2dup to make duplicates of nests on the stack, oats will reveal
that they are not two identical nests; they are the same nest, twice.

/O> ' [23 24 25] dup oats

...

Stack: 1

However; if we create two identical looking nests, they are not one and the same.

/O> ' [23 24 25] ' [23 24 25] oats

...

Stack: 0

The key to understanding this is to know that when we say something is “on the stack” or “in a
nest”, we are using imprecise language. Strictly speaking, stacks and nests contain pointers to
Quackery objects. (Pointers are much like links on web pages. A page may contain two or more
links to one page (i.e. the links point to one and the same page), or it may contain links to two
or more identical pages on different websites (i.e. the links point to pages that are equivalent
but not one and the same).

The majority of words in Quackery take account of this distinction, so if we use join from
the nest editing words to append a number to a nest, it does not modify the nest, rather it
creates a new nest that is the result of appending a number to the specified nest.

/O> ' [1 2 3 4] dup

...

Stack: [1 2 3 4] [1 2 3 4]

/O> 999 join

...

Stack: [1 2 3 4] [1 2 3 4 999]

The ancillary stack words (described below) of necessity do not create new instances of the
stack (or nest) they are applied to, which can lead to surprising behaviour. In the following
illustrative shell dialogue we use the ancillary stack word put rather than the nest editing word
join to append a number to a nest, whilst keeping the original nest on the stack so that we can
see that it also changes.

 of 73 160

/O> ' [1 2 3 4] dup

...

Stack: [1 2 3 4] [1 2 3 4]

/O> 999 over put

...

Stack: [1 2 3 4 999] [1 2 3 4 999]

This behaviour can be circumnavigated by judicious use of the word copy, which replaces the
top of stack with a new copy of itself. When the ToS is a nest, the copy is a pointer to a new
nest, not one and the same as any existing nest.

/O> ' [1 2 3 4] dup copy

...

Stack: [1 2 3 4] [1 2 3 4]

/O> 999 over put

...

Stack: [1 2 3 4] [1 2 3 4 999]

For this reason is prudent to only use the ancillary stack words for managing ancillary stacks.
(See table in the Control Flow words and resolves in the Builder words for exceptions to
this guideline.)

Also note that oats may provide surprising results when applied to numbers. Internally,
Python 3 represents numbers in a variety of ways depending on their size, and sometimes it
conserves memory by making two numbers that are equal “one and the same”, and sometimes
it does not. While the programmer is protected from any adverse effects of this optimisation,
it does mean that applying oats to two equal numbers is not a particularly meaningful act.

Two instances of a Quackery operator, whether generated by duplication (“dup” et cetera.) or
by quoting (“'”) are always one and the same. (i.e. oats will always return true.)

!= (a b --> c)

!= takes two things from the stack, a and b, and leaves 1 (i.e. true) on the stack if they are
equivalent, and 0 (i.e. false) otherwise. != does the same as = not.

< (a b --> c)

< takes two numbers from the stack, a and b, and leaves 1 (i.e. true) on the stack if a is less
(closer to negative infinity) than b, and 0 (i.e. false) otherwise.

> (a b --> c)

> takes two numbers from the stack, a and b, and leaves 1 (i.e. true) on the stack if a is more
(closer to positive infinity) than b, and 0 (i.e. false) otherwise.

 of 74 160

min (a b --> c)

min takes two numbers from the stack, and leaves the smaller (closer to negative infinity)
number on the stack.

max (a b --> c)

max takes two numbers from the stack, and leaves the larger (closer to positive infinity) number
on the stack.

clamp (a b c --> d)

clamp takes three numbers from the stack, a, b, and c. If a is less than b, it leaves b on the
stack, if a is larger than c, it leaves c on the stack. Otherwise (i.e. if a is equal to either b or c,
or lies between b and c) it leaves a on the stack.

3 4 6 clamp returns 4

4 4 6 clamp returns 4

5 4 6 clamp returns 5

6 4 6 clamp returns 6

7 4 6 clamp returns 6

within (a b c --> d)

within takes three numbers from the stack, a, b and c, and leaves 1 (true) on the stack if a is
within the range b to 1 less than c, inclusive (i.e., a is larger than or equal to b, and smaller than
c), and 0 (false) otherwise.

3 4 6 within returns false

4 4 6 within returns true

5 4 6 within returns true

6 4 6 within returns false

7 4 6 within returns false

$< (a b --> c)

$< takes two strings from the stack, a and b, and leaves 1 (i.e. true) on the stack if a comes
before b according to its QACSFOT ordering (see qacsfot, in the Character and String words,
below) and 0 (i.e. false) otherwise. QACSFOT ordering is similar to dictionary ordering, in
that the strings are compared character by character from left to right, until a difference is
found. Spaces and carriage returns are considered identical and come before the numbers 0 to
9. Then come the letters, in the order AaBbCc and so on, and other characters come after
letters.

These are in QACSFOT order: 0, 1, 10, 2, 20, Bat, bat, caT, cat, catch, $#!%!

$> (a b --> c)

The same as $<, except true if a comes after b, and false otherwise.

 of 75 160

Boolean Logic

true false not and nand or xor

true (--> 1)

true puts the number 1 on the stack.

false (--> 0)

false puts the number 0 on the stack.

not (a --> b)

not expects a number, a, on the stack. It replaces it with 1 if a is 0, and with 0 otherwise. As
with all the Boolean logic words, it treats arguments of 0 as false and other numbers as true.

and (a b --> c)

and expects two numbers, a and b, on the stack. It replaces them with 1 if neither a nor b are
0, and with 0 otherwise.

nand (a b --> c)

nand expects two numbers, a and b, on the stack. It replaces them with 0 if neither a nor b are
0, and with 1 otherwise. nand is equivalent to and not.

or (a b --> c)

or expects two numbers, a and b, on the stack. It replaces them with 0 if both a and b are 0,
and with 1 otherwise.

xor (a b --> c)

xor expects two numbers, a and b, on the stack. It replaces them with 1 if one of a and b is 0
and the other is not 0, and with 0 otherwise.

Other Boolean Operations

If required, material equivalence (a⇔b), can be defined as:

[xor not] is <=> (a b --> c)

(This is the same as =, except that it expects two numbers on the stack and will report a
problem if it finds a nest or an operator.)

If required, material implication (a⇒b) can be defined as:

[swap not or] is implies (a b --> c)

If required, nor can be defined as:

[or not] is nor (a b --> c)

 of 76 160

Bitwise Logic

~ & | ^ << >> bit 64bits 64bitmask rot64

The bitwise logic words operate on the internal binary representations of numbers. To
illustrate their behaviours we will define the word echo8bits to display the least significant 8
bits of a number on the screen. So 0 will be displayed as 00000000, 1 as 00000001, 2 as
00000010, 3 as 00000011, 4 as 00000100, all the way to 255 (i.e. hex FF) as 11111111. The
word echoline will display “--------” on the screen.

[8 times

 [2 /mod swap]

 drop

 8 times echo] is echo8bits (n -->)

[char - 8 of echo$] is echoline (-->)

Also, we will use the ancillary stack base and the builders word now! to temporarily change
Quackery’s default base to binary and return it to decimal during compilation.

/O> [2 base put] now!

... 00101010 echo8bits

... [base release] now!

...

00101010

~ (a --> b)

~ is bitwise not. It takes a number from the stack and inverts the bits, so 0s become 1s and
vice versa.

/O> [2 base put] now!

... 11010101 dup echo8bits cr

... [base release] now!

... echoline cr

... ~ echo8bits cr

...

11010101

00101010

& (a b --> c)

& is bitwise and. It takes two numbers from the stack and returns the result of performing and
on all of their bits.

/O> [2 base put] now!

... 10111110 dup echo8bits cr

... 01101010 dup echo8bits cr

... [base release] now!

... echoline cr

... & echo8bits cr

...

10111110

01101010

00101010

 of 77 160

| (a b --> c)

| is bitwise or. It takes two numbers from the stack and returns the result of performing or
on all of their bits.

/O> [2 base put] now!

... 00001010 dup echo8bits cr

... 00100010 dup echo8bits cr

... [base release] now!

... echoline cr

... | echo8bits cr

...

00001010

00100010

00101010

^ (a b --> c)

^ is bitwise xor, not to be confused with raising a number to a power, which is **. It takes two
numbers from the stack and returns the result of performing xor on all of their bits.

/O> [2 base put] now!

... 00001111 dup echo8bits cr

... 00100101 dup echo8bits cr

... [base release] now!

... echoline cr

... ^ echo8bits cr

...

00001111

00100101

00101010

<< (a b --> c)

<< is logical shift left. It takes two numbers from the stack, a and b and returns the result
shifting the bits of a by b places to the left, inserting 0s in the b empty least significant bits.

/O> [2 base put] now!

... 00010101 dup echo8bits cr

... echoline cr

... [base release] now!

... 2 << echo8bits cr

...

00010101

01010100

 of 78 160

>> (a b --> c)

<< is logical shift right. It takes two numbers from the stack, a and b and returns the result
shifting the bits of a by b places to the right, discarding the b least significant bits.

/O> [2 base put] now!

... 10101001 dup echo8bits cr

... [base release] now!

... echoline cr

... 2 >> echo8bits cr

...

10101001

00101010

bit (a --> b)

bit expects a non-negative number, a, and returns a number, b, with all its bits set to 0 except
for the ath bit, which is set to 1. Bits are counted from the least significant, which is bit 0. So 0
bit returns (in binary) 1, 1 bit returns 10, 2 bit returns 100 and so on.

The remaining bitwise logic words, 64bits, 64bitmask, and rot64, are included as they are
used by the Pseudorandom Number words, but may feasibly be of use elsewhere.

64bits (a --> b)

64bits expects a number, a, and returns a number, b, equal to a with the 64 least significant
bits unchanged, and all higher bits being set to 0. To put it another way, 64bits masks out all
the bits to the left of the 63rd bit. (Counting starts with the 0th bit.)

64bitmask (--> a)

64bitmask puts the binary number
11 on the
stack. (That’s sixty four 1s.)

rot64 (a b --> c)

rot64 takes two numbers, a and b, from the stack. b should be in the range 0 to 64 inclusive. a
should be in the range 0 and the number returned by 64bitmask, inclusive. a will be masked
to force it into that range. If b is equal to 0 or 64, then c is equal to masked a, otherwise c is
equal to masked a with the most significant b bits moved down to be the b least significant
bits, and the higher bits moved up accordingly. So, as hex DEFACEABADFACADE is a 64 bit
number and the hexadecimal digits DEFACE occupy the 24 (decimal) most significant bits,

hex DEFACEABADFACADE 24 rot64

will leave the hexadecimal number ABADFACADEDEFACE on the stack.

 of 79 160

Pseudorandom Numbers

random randomise shuffle

prng prng.a prng.b prng.c prng.d initrandom

The Pseudorandom Number words are adapted from the 64 bit variant of “A Small
Noncryptographic PRNG” by Bob Jenkins, which is in the public domain. The code and notes
about it can be found at http://burtleburtle.net/bob/rand/smallprng.html.

random (a --> b)

random expects a number, a, in the range 0 to 264-1 inclusive, and returns a pseudorandom
number b in that range. The numbers that it returns are (believed to be) evenly distributed
within the range, and part of a very long cycle.

randomise (-->)

randomise reinitialises the PRNG (PseudoRandom Number Generator) with a different and
(realistically speaking) unpredictable number each time it is called. This word should be used
before a series of numbers are generated by random if different results are desired each time.
One invocation of randomise is sufficient each time Quackery is used.

shuffle (a --> b)

shuffle expects a nest, a, and uses random to create a new nest, b, with the same contents as
a, but in a different order. For example:

/O> ' [0 1 2 3 4 [5 6 7]] shuffle

...

Stack: [4 3 2 [5 6 7] 0 1]

/O> shuffle

...

Stack: [0 2 1 4 [5 6 7] 3]

Note that nests within the shuffled nest are not shuffled.

The rest of the Pseudorandom Number words are intended for use only by random and
randomise, but briefly, prng (--> a) returns a pseudorandom number in the range 0 to
264-1 inclusive, prng.a prng.b prng.c prng.d are ancillary stacks used by prng, and
initrandom (n -->) is used to kickstart the PRNG, initially from a specified number, and
by randomise from an unpredictable number returned by time.

 of 80 160

http://burtleburtle.net/bob/rand/smallprng.html

Ancillary Stacks

stack put take release share replace move tally temp base decimal
filepath

For discussion of using the ancillary stack words on Quackery objects other than ancillary
stacks, see the descriptions of table and of the comparison words = and oats.

stack (--> a)

stack is used to make an ancillary stack. It should be the first word of a nest. It returns a, a
pointer to that nest for use by the ancillary stack words put, take, share, replace, release,
move, and tally. Any items in the nest after stack are not performed, they are the initial
contents of the ancillary stack. For example,

[stack [52 50]] is example1

creates an ancillary stack called example1 with one item on it, the nest [52 50].

put (a b -->)

put transfers an item, a, from the Quackery stack to an ancillary stack, b.

Continuing with the example, after doing

' [68 78 65] example1 put

the ancillary stack example1 will contain the two items

[52 50] [68 78 65]

with [68 78 65] being the top of the ancillary stack.

take (a --> b)

take transfers the top item, b, of an ancillary stack, a, to the Quackery stack.

Continuing with the example, after doing

example1 take

the ancillary stack example1 will contain [52 50] as its top of stack, and

[68 78 65] will be on the top of the Quackery stack.

release (a -->)

release removes the top item of an ancillary stack, a. It is equivalent to take drop.

share (a --> b)

share puts a duplicate of the top item, b, of an ancillary stack, a, on the Quackery stack,
without removing it from the ancillary stack. It is equivalent to

dup take dup rot put

 of 81 160

replace (a b -->)

replace replaces the top item of ancillary stack b with a. Equivalent to dup release put.

move (a b -->)

replace transfers the top item of ancillary stack a to ancillary stack b. It is equivalent to: a
take b put.

The following Quackscript moves three numbers from ancillary stack a to ancillary stack b,
following the rules of the Tower of Hanoi game, (i.e a larger number can never be on top of a
smaller number) and then prints the ancillary stack b using copy echo.

/O> [stack 3 2 1] is a

... [stack] is b

... [stack] is c

... a b move

... a c move

... b c move

... a b move

... c a move

... c b move

... a b move

... b copy echo

...

[stack 3 2 1]

Stack empty.

tally (a b -->)

tally expects a number a, and an ancillary stack, b, with a number as its top of stack. It adds
the number a to the top of ancillary stack b. tally could be used, for example, to maintain a
running total without cluttering up the Quackery stack.

temp (--> a)

temp is an ancillary stack used by various predefined Quackery words. All the predefined
words that use temp observe the convention of only take-ing as many items as they put, and
not using any of the ancillary stack words take, release, share, or replace without first
putting, so temp is available for other uses.

base (a -->)

base is an ancillary stack used by Quackery to determine the current base for conversion
between numbers and characters, and numbers and strings. The default base is decimal. Note
that build overrides the current default base and sets it to decimal. For a demonstration of
changing base whilst building, see the description of the bitwise logic words. base should be
between 2 (binary) and 36 (hexatridecimal) inclusive.

decimal (-->)

decimal overrides the current base and sets it to decimal. It is equivalent to 10 base put, so
should be followed by base release to observe stack conventions.

filepath (--> a)

filepath is an ancillary stack used by the File Management words.  

 of 82 160

Control Flow

done again if iff else until while

]done[]again[]if[]iff[]else[]'[]do[]this[

' do this table

recurse decurse depth

times i i^ step refresh conclude

times.start times.count times.action

Structured Control Flow

done again if iff else until while

When the Quackery processor performs a nest of Quackery code, it starts at the [and
proceeds one item at a time until it ends at the], unless it encounters a word that modifies the
flow of control by jumping to the start or the end of the nest, or by skipping over one or two
items. Conditional jumps and skips are dependent on the item on the top of the Quackery
stack. The structured control flow words can be used without restrictions of order or number
within a nest.

done (-->)

done causes a jump to the end of the nest. (Actually, it exits the nest immediately, which has
the same effect as jumping to the end of the nest but is a smidgeon faster.)

/O> [$ 'Print this once.' echo$

... done

... $ 'Do not print this.' echo$]

...

Print this once.

again (-->)

again causes a jump to the start of the nest.

[cr $ 'Print this forever.' echo$ again]

will print line after line of “Print this forever.” on the screen until the computer stops
working or someone presses Control C, whichever happens first.

if (a -->)

if will cause the processor to skip over the next item if a is 0 (i.e. false).

/O> true if [$ 'true' echo$]

... false if [$ 'false' echo$]

...

true

iff (a -->)

iff will cause the processor to skip over the next two items if a is 0 (i.e. false).

/O> false true true true

... [iff [$ 'true ' echo$] again]

...

true true true

 of 83 160

else (-->)

else will cause the processor to skip over the next item.

/O> true iff [$ 'true' echo$]

... else [$ 'false' echo$]

...

true

/O> false iff [$ 'true' echo$]

... else [$ 'false' echo$]

...

false

until (a -->)

until will cause a jump to the start of the nest if a is zero (i.e. false.) It is equivalent to not
if again.

/O> true false false false

... [dup

... iff [$ 'true ' echo$]

... else [$ 'false ' echo$]

... until]

...

false false false true

while (a -->)

while will causes a jump to the end of the nest if a is zero (i.e. false.) It is equivalent to not
if done.

/O> false true true true

... [while $ 'true ' echo$ again]

...

true true true

Meta Control Flow

]done[]again[]if[]iff[]else[]'[]do[]this[

While while is equivalent to not if done, it cannot be defined as

[not if done] is while

because the done will cause a jump to the end of the nest that it occurs in, rather than the nest
in which the while occurs. The definition of while is

[not if]done[] is while (b -->)

where]done[can be thought of as granting the “jump to end of nest” behaviour to while.
Similarly, done, again, if, iff, else, and until are defined with:

[]done[] is done (-->)

[]again[] is again (-->)

[]if[] is if (a -->)

[]else[] is else (-->)

[not if]again[] is until (a -->)

 of 84 160

The rest of the meta control flow words are illustrated in the following descriptions, with the
exception of]bailby[, which is illustrated in the exception handling words section.

Deferment

' do this table

“Saying and doing are two things.”

Matthew Henry, 1662–1714

(Also see the To-do Stack section for another sort of deferment that uses 'and do.)

' (--> a)

' “quotes” the item that follows it, which is to say that the word, nest or number after ' is put
on the stack rather than being performed.

/O> ' 21

... ' [dup +]

...

Stack: 21 [dup +]

Note that in this example, quoting the number 21 is redundant, since the behaviour of
numbers is to put their value on the stack. We might describe this behaviour by saying that
“numbers quote themselves”.)

' acquires its behaviour from]'[. It is defined with: []'[] is '.

do (a -->)

do undoes the behaviour of '; it takes the ToS, a, and performs it.

Stack: 21 [dup +]

/O> do

...

Stack: 42

Working together, ' and do give deferment; the ability to say something now and do it later.

Note that doing a number is also redundant – numbers do themselves.

/O> 42 do

...

Stack: 42

do acquires its behaviour from]do[. It is defined as:

[]do[] is do

 of 85 160

this (--> a)

this puts the nest it is in on the stack.

/O> 3 times [this echo sp]

...

[this echo sp] [this echo sp] [this echo sp]

Stack empty.

this acquires its behaviour from]this[. It is defined as:

[]this[] is this

table (a --> b)

table takes a number, a, from the stack, and leaves a Quackery object, b, on the stack in its
place. Like stack, it needs to be the first item of a nest. The object b, is the ath object
following table in the nest, counting from 0. If a is negative, it returns the -ath item
counting backwards from the end of the nest, with the end item numbered -1. So:

 0 [table 10 11 12] would leave 10 on the stack,

 1 [table 10 11 12] would leave 11 on the stack,

-1 [table 10 11 12] would leave 12 on the stack, and

-2 [table 10 11 12] would leave 11 on the stack.

 
Used in conjunction with do, table provides multiway branching behaviour illustrated here
with the word monthdays.

divides returns true if the number x is exactly divisible by the number y and false
otherwise.

[mod 0 =] is divides (x y --> b)

leap returns true (i.e. 1) if the number y is a leap year number, and false (i.e. 0) otherwise.

[dup 400 divides iff

 [drop true] done

 dup 100 divides iff

 [drop false] done

 4 divides] is leap (y --> b)

monthdays takes a year (y) number and month (m) number (counting from January as 1), and
returns n, the number of days in the specified month.

[1 -

 [table

 31 [dup leap 28 +]

 31 30 31 30 31 31 30

 31 30 31]

 do nip] is monthdays (y m --> n)

Taking April 1970 as an example, (i.e. 1970 4 monthdays) table will replace the 3 on the
ToS with 30, do will replace that with 30, (taking advantage of the redundancy of doing
numbers) and finally nip will remove the year number (1970) from 2oS, leaving 30 on the ToS.

 of 86 160

Taking February 2020 as an example, (i.e. 2020 2 monthdays) table will replace the 1 on the
ToS with the nest [dup leap 28 +], do will do that nest, (i.e. dup will duplicate the year
number, leap will remove the uppermost duplicate and replace it with 1, as 2020 is a leap year,
which will be added to 28 by +, giving 29 as the ToS) and finally nip will remove the year
number (2020) from 2oS, leaving 29 on the ToS.

As with stack, table uses]this[to refer to its enclosing nest, and]done[to jump over the
other items in the nest.

tables can be extended dynamically using the ancillary stack word put, which will add an
extra item at the end of the table.

[table 10 11 12 13] is example

' example 14 put

is equivalent to

[table 10 11 12 13 14] is example

and in general the ancillary stack words operate on tables in the same manner as they operate
on ancillary stacks. For discussion about creating other words that can be modified using
ancillary stack words, see immovable in the notes on internal representation words below.

Recursion

recurse decurse depth

recurse (-->)

recurse causes its enclosing nest to do itself. It is equivalent to this do and is defined as:
[]this[do] is recurse

For example, the naive recursive Fibonacci function:

[dup 2 < if done

 dup 1 - recurse

 swap 2 - recurse

 +] is Fibonacci (a --> b)

Taking it line by line,

dup 2 < if done if a is 0 or 1, then b is 0 or 1 respectively, otherwise

dup 1 - recurse find the Fibonacci number of a-1 and

swap 2 - recurse the Fibonacci number of a-2 and

+ add them together.

 of 87 160

decurse (-->)

decurse has the same behaviour as recurse, except that is limited in the number of recursive
calls it can perform by the number on the top of the ancillary stack depth, which tracks the
number of remaining recursive calls available to it.

/O> 10 depth put

... [depth share echo sp

... decurse

... depth share echo sp]

... depth release

...

10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10

If depth is set to -1, decurse behaves in the same way as recurse, i.e. without limit, and the
current depth of recursion can be determined with depth share 1+ negate.

For recursive structures that require more than a single enclosing nest, see the building words
forward and resolves.

depth (--> a)

depth is a system ancillary stack used by decurse, as described above.

Iteration

times i i^ step refresh conclude

times.start times.count times.action

times (a -->)

times repeats the behaviour of the item that follows it a times, unless modified with step,
refresh or conclude. If a is less than 1, it is repeated 0 times.

/O> [times [char * emit]] is stars (n -->)

... 5 stars

...

dice returns the result of rolling a six sided dice a times and adding the dots. It is used in the
code illustrating refresh and conclude below.

[0 swap

 times

 [6 random 1+ +]] is dice (a --> b)

i (--> a)

While times is repeating, i returns a number indicating the number of repeats remaining after
the current iteration, if the step size is 1. (See step.)

/O> 10 times [i echo sp]

...

9 8 7 6 5 4 3 2 1 0

 of 88 160

i^ (--> a)

While times is repeating, i^ returns a number indicating the number of repeats performed
prior to the current iteration, if the step size is 1. (See step.)

/O> 10 times [i^ echo sp]

...

0 1 2 3 4 5 6 7 8 9

step (a -->)

While times is repeating, step specifies the step size as a, which affects i and i^ as
illustrated. The default step size is 1.

Be wary of the hidden “gotcha”. times maintains a countdown from the initial value passed to
it down to zero. It decrements this countdown at the start of the loop. step works by
adjusting the countdown, taking the decrement of the countdown at the start of the next
iteration into account, which is why it affects the behaviour of i and i^ immediately.

/O> 10 times [i echo sp 2 step] cr

... 10 times [i^ echo sp 2 step]

...

9 7 5 3 1

0 2 4 6 8

/O> 10 times [2 step i echo sp] cr

... 10 times [2 step i^ echo sp]

...

8 6 4 2 0

1 3 5 7 9

/O> 1024 times [i^ 1+ dup step echo sp]

...

1 2 4 8 16 32 64 128 256 512 1024

refresh (-->)

While times is repeating, refresh resets the iteration countdown to the number originally
passed to times. As with step, the behaviour of i and i^ is affected immediately.

sixes (a -->) rolls one dice until a number of sixes have been rolled consecutively.

[times

 [1 dice

 dup 6 != if

 refresh

 echo sp]] is sixes (a -->)

/O> 5 times [2 sixes cr]

...

6 5 6 6

1 1 4 6 1 4 1 4 4 6 1 5 6 3 5 1 3 3 1 5 3 3 6 6

5 5 5 2 3 5 4 5 1 4 5 3 3 5 1 3 3 4 2 3 3 5 1 2 6 6

2 2 5 2 4 4 2 6 6

5 4 5 1 1 6 2 6 6

(This example was chosen for brevity. Typically it takes longer than this to roll two sixes.)

 of 89 160

conclude (-->)

While times is repeating, conclude sets the iteration countdown to zero. As with step, the
behaviour of i and i^ is affected immediately.

snakeeyes (a -->) rolls two dice at most a times, but ends prematurely if snake eyes
(two ones) is rolled.

[times

 [2 dice

 dup 2 = if

 conclude

 echo sp]] is snakeeyes (a -->)

/O> 5 times [20 snakeeyes cr]

...

10 4 8 4 7 10 10 4 9 6 10 8 11 7 8 12 9 7 3 10

6 6 3 5 11 5 8 8 8 6 5 4 8 9 4 10 6 9 11 2

4 5 4 8 5 7 12 3 11 10 10 8 4 3 5 7 8 4 5 7

2

6 10 5 6 3 8 9 3 2

times.start, times.count, and times.action are ancillary stacks used by the iteration words.

Characters and Strings

space carriage upper lower printable qacsfot digit char->n number$ $->n
trim nextword nest$

Quackery recognises the following printable characters 

0123456789AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrS

sTtUuVvWwXxYyZz()[]{}<>~=+-*/^\|_.,:;?!'"`%@&#$

 
and represents them by their Unicode code points (i.e. the numbers 33 to 126 inclusive.)

The space character is represented by the number 32, and the number 13 (i.e. carriage return)
represents whichever character causes the start of a new line of text in the host operating
system.

All other characters are converted to the number 63 (i.e. a question mark) when inputted to
Quackery from the keyboard or text files, and all other numbers are converted to a question
mark (i.e. code point 63) when output as characters from Quackery to the screen or to a text
file.

Strings of characters are represented as nests of numbers, so most of the nest editing words
work with strings. The searching and sorting words find and sort$ work with strings. The
user input and output words with the exception of ding work with characters or strings. The
file management words work with strings. The building words char and $ put a character and
a string on the stack respectively.

The words described in this section are specific to handling characters and strings, and do not
fall into other categories.

 of 90 160

carriage (--> 13)

carriage puts the number that represents a new line or carriage return on the stack.

Incidentally, as with other words that act as numerical constants, it is defined as [13] is
carriage, rather than 13 is carriage, which would also work, so that the decompiler
(unbuild) gives a more meaningful decompilation. This can be demonstrated in the shell,
which displays the stack by decompiling its contents.

/O> 23 is twentythree

... [42] is fortytwo

... ' twentythree

... ' fortytwo

...

Stack: 23 fortytwo

space (--> 32)

space puts the number representing the space character on the stack.

upper (a --> b)

upper takes a character, a, from the stack and puts a character, b, on the stack. If a is a lower
case (minuscule) letter, b is its upper case (majuscule) equivalent, otherwise b is the same as a.

lower (a --> b)

lower takes a character, a, from the stack and puts a character, b, on the stack. If a is an upper
case (majuscule) letter, b is its lower case (minuscule) equivalent, otherwise b is the same as a.

printable (a --> b)

printable expects a character a on the stack, and returns false if it is space or carriage,
and true if it is one of the printable characters listed above.

qacsfot (a --> b)

qacsfot maps a character a onto the Quackery Arbitrary Character Sequence For Ordered
Text, (QACSFOT) which is slightly less arbitrary than the Unicode code points for the set of
characters that Quackery recognises. For non-printable and unrecognised characters it returns
0, for printable characters it returns a number b in the range 1 to 94 according to its position
in QACSFOT, which is:

0123456789AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrS

sTtUuVvWwXxYyZz()[]{}<>~=+-*/^\|_.,:;?!'"`%@&#$

 of 91 160

digit (a --> b)

digit takes a number a from the stack and if a is in the range 0 to 35 inclusive, puts the
corresponding alphanumeric digit on the stack. The numbers 0 to 9 correspond to the
characters “0” to “9”, and the numbers 10 to 35 correspond to the characters “A” to “Z”.

char->n (a --> b)

char->n takes an alphanumeric character a from the stack, and returns a number b
corresponding to a as per digit. char->n treats lower case letters as equivalent to upper case
letters. If a is not a valid digit in the current base, char->n returns -1 to indicate an
unsuccessful conversion.

number$ (a --> b)

number$ takes a number a and converts it to its string representation b in the current base.

$->n (a --> b c)

$->n$ takes a string a and attempts to convert it to a number in the current base. If the
conversion is successful c will be true and the number b will be the numerical value of a. If
the conversion is not successful c will be false and the number b will be the numerical value
of a up to the character in the string a that was not a valid digit in the current base.

trim (a --> b)

trim takes a string a and returns a string b, the same as string a but with leading whitespace
characters (i.e. not printable characters) removed.

nextword (a --> b c)

nextword takes a string a which should have had any leading whitespace removed with trim,
and returns two strings, b and c, where c is a string of the characters before the first
whitespace character in a, and b is the rest of the string a.

/O> $ " first and the rest"

... trim nextword echo$ cr

... echo$

...

first

 and the rest

nest$ (a --> b)

nest$ takes a string, a, and turns it into a nest of strings, b, by stripping out extraneous
whitespace and separating each word in the string into its own nest.

 of 92 160

Nest Editing

[] nested join split size peek poke pluck stuff behead of reverse reflect
copy makewith witheach with.hold

[] (--> a)

[] creates an empty nest.

nested (a --> b)

nested creates a nest b and puts a in it.

join (a b --> c)

join creates a nest c which is the concatenation of a and b.

/O> ' [1 2] ' [3 4] join echo cr (a and b are nests)

... 12 34 join echo cr (neither are nests)

... ' [1 2] 34 join echo cr (only a is a nest)

... 12 ' [3 4] join echo cr (only b is a nest)

...

[1 2 3 4]

[12 34]

[1 2 34]

[12 3 4]

split (a b --> c d)

split expects a nest a and a number b, and returns two nests, c and d formed by dividing nest
a in two at position b.

 0 1 2 3 4 5 6 Zero and positive positions.

 ↓ ↓ ↓ ↓ ↓ ↓ ↓

[100 101 102 103 104 105]

 ↑ ↑ ↑ ↑ ↑ ↑ ↑

-7 -6 -5 -4 -3 -2 -1 Negative positions.

When position b is at the start of nest a (i.e. 0 or -7 above) nest c will be an empty nest and
nest d will be the same as nest a.

When position b is at the end of nest a (i.e. 6 or -1 above) nest c will be the same as nest a
and nest d will be an empty nest.

size (a --> b)

size expects a nest, a, and returns the number of items it contains, b. Nests within a count as
a single item.

/O> ' [0 1 2 [30 31 32] 4] size

...

Stack: 5

 of 93 160

peek (a b --> c)

peek expects a nest a and a number b, and returns the bth item of a. a is not modified.

 0 1 2 3 4 5 Zero and positive item numbers.

 ↓ ↓ ↓ ↓ ↓ ↓

[100 101 102 103 104 105]

 ↑ ↑ ↑ ↑ ↑ ↑

 -6 -5 -4 -3 -2 -1 Negative item numbers.

poke (a b c --> d)

poke expects an item a, a nest b, and a position c, and returns a nest d, which is identical to b
except that the item at position c has been replaced with item a.

pluck (a b --> c d)

pluck expects a nest a and a number b, and returns c, a copy of a with the bth item removed,
and d, the bth item of a. Item numbers are as illustrated in peek.

/O> ' [10 11 12 13] 2 pluck

...

Stack: [10 11 13] 12

stuff (a b c --> d)

stuff takes an item, a, a nest b, and a number c, and returns a copy of b with a inserted into
the cth position. Position numbers are as illustrated in split.

/O> 999 ' [0 1 2 3] 2 stuff

...

Stack: [0 1 999 2 3]

behead (a --> b c)

behead takes a nest, a , and returns a nest, b, a copy of a with the 0th item removed, and c,
the 0th item of a.

/O> ' [10 11 12 13] behead

...

Stack: [11 12 13] 10

of (a b --> c)

of creates a nest, c, made of b copies of a joined together.

/O> ' dup 3 of

...

Stack: [dup dup dup]

/O> ' [3 swap] 2 of

...

Stack: [3 swap 3 swap]

 of 94 160

reverse (a --> b)

reverse takes an item a from the stack and if it is a nest, returns a reversed copy. b. If a is
number or an operator, b is the same as a.

/O> ' [rot [3 tuck]] reverse echo

...

[[3 tuck] rot]

Note that the nest within the nest, [3 tuck]. is not reversed.

reflect (a --> b)

reflect is like reverse, except that it digs down into nested nests. It takes an item a from
the stack and if it is a nest, returns an enthusiastically reversed copy, b. If a is number or an
operator, b is the same as a.

/O> ' [rot [3 tuck]] reflect echo

...

[[tuck 3] rot]

Note that while it reversed the nested nest [3 tuck], it did not dig down into the definition
of tuck ([swap over]) and reverse a copy of that too. It uses the word named? to
identify nests that are words, and avoids digging down into them, so it can safely reflect words
which are recursively defined, using forward is and resolves, and ancillary stacks which
contain themselves. (Created, for example, with temp temp put.)

It is not possible to create such self-containing nests using the nest editing words alone,
however we can use put to put an empty nest inside itself, and allow the shell to display it by
leaving the result on the stack. Unlike echo, the shell limits the depth of nesting when it
shows the stack (indicated by “...”) so it does not get stuck in an endless loop.

/O> [] dup dup put

...

Stack: [[[[[...]]]]]

Trying to echo this will cause Quackery to hang. Pressing Control C will resolve this impasse
by forcibly terminating both Quackery and the host language.  

 of 95 160

The following word demonstrates the use of nest editing words to construct nests with specific
behaviours. The basic idea, that one can join two nests of do-able Quackery code to make a new nest
of Quackery code is quite straightforward. Practical examples can be somewhat less straightforward.

makewith (a --> b)

makewith takes an item, a, from the stack, and constructs a nest, b, around it. The behaviour
of b is to apply the behaviour of a to each item of a nest that it finds on the stack. (When
indexing a nest, i ~ is equivalent to i^, but a bit quicker.)

[nested

 ' [dup with.hold put

 size times]

 ' [with.hold share

 i ~ peek]

 rot join nested join

 ' [with.hold release]

 join] is makewith (a --> b)

/O> 0 ' [1 2 3 4 5]

... ' + makewith

... dup echo

... do

...

[dup with.hold put size times [with.hold share i^ peek +]
with.hold release]

Stack: 15

Taking the shell interaction line by line:

0 ' [1 2 3 4 5]

This is setting up the stack for the demonstration. The plan is to construct a nest that
takes the ToS, [1 2 3 4 5], and adds each item in turn to the 2oS, 0, leaving the
sum of the numbers in the nest on the stack.

' + makewith

Construct a “with” nest around the “+” operator,

dup echo

and echo it to the screen to show what makewith constructed,

do

and demonstrate that it works by applying it to the items on the stack.

The nest that makewith constructed, (laid out nicely.)

[dup with.hold put

 size times

 [with.hold share

 i ~ peek +]

 with.hold release]

The sum of 1, 2, 3, 4, and 5 is 15. 

 of 96 160

witheach (a -->)

witheach takes the item following it and applies its behaviour to each item in the nest, a, that
it expects on the stack. Continuing with the example from makewith of finding the sum, b, of
the numbers in a nest of numbers, a, sum can be defined as,

[0 swap witheach +] is sum (a --> b)

and testing it in the shell…

/O> ' [1 2 3 4 5] sum echo

...

15

witheach is defined as []’[makewith do] is witheach.

Pro tip: as makewith constructs a times loop, things that it constructs the loop around, such
as a nest following a witheach, can use i, i^, step, refresh and conclude.

with.hold (--> a)

with.hold is an ancillary stack used by nests created with makewith.

Searching and Sorting

matchitem findwith find findseq found sortwith sort sort$

match.test match.nest sort.test

matchitem (a b c --> d)

matchitem builds on the idea demonstrated in makewith of constructing nests with useful
behaviours on the fly by taking a word from the stack, constructing a nest that includes that
word and passing it to makewith for further editing. A nest created with matchitem will
examine each item in a nest, a, until it finds one that meets a criterion specified by b, then do
c, (typically some stack tidying-up action dependant on the behaviour of b) and finally put the
position, d, of the item that matched the criterion on the stack. b should expect to find an item
of nest a on the stack and leave true on the stack if the criterion was met, and false
otherwise. If b requires any other items on the stack, they should still be on the stack after
doing b, and c should remove them.

For example, if the aim is to find the first item in a nest which is a number, then b could be the
operator number?, which leaves true on the stack if the ToS was a number, and false if it
was a nest or word. As number? only takes one argument no tidy-up is required, so c can be an
empty nest, which is the Quackery equivalent of a no-op (do-nothing) instruction. In this
demonstration, a is a nest containing a word as item 0, a nest as item 1 and a number as item 2.

/O> ' [dup [0 1] 23] ' number? ' [] matchitem

...

Stack: 2

If no item in nest a meets criterion b, matchitem will leave the size of nest a on the stack.

/O> ' [dup * 1+] ' number? ' [] matchitem

...

Stack: 3

 of 97 160

findwith (a --> b)

findwith takes the functionality of matchitem and gives it a less flexible but more intuitive
usage, by placing the words that specify its behaviour after the word findwith rather than
expecting them to be on the stack. So the example given for findwith of searching a nest for
the first instance of a number becomes,

/O> ' [dup [0 1] 23] findwith number? []

...

Stack: 2

findwith is defined as

[]'[]'[matchitem] is findwith

In the example above, the first]'[puts number? on the stack, and the second]’[puts the
empty nest [] on the stack above number?.

find (a b --> c)

find expects a nest b on the ToS, and underneath that the number, word, or nest a to search
for in b. If a is an item in b, it returns the position of the first occurrence of a in b, and if not,
returns the size of b.

/O> 12 ' [10 11 12 13] find

...

Stack: 2

Commentary: find could be defined as follows, but in practice it is coded as an operator, i.e. in
Python 3 code. A major design criterion in Quackery is that as much of Quackery be written in
Quackery as is reasonable, to facilitate porting to other host languages, and so that elements
such as the extensible compiler, build, the command line interpreter, shell, and the tools
used to create them are exposed to the programmer, facilitating the creation of variations on
either, should the programmer desire. As migrating find from Quackery to Python 3 gave a
sixfold increase in compilation speed and a more responsive feel to shell, this was felt to be
an acceptable concession.

[findwith [over =] drop] is find

findseq (a b --> c)

find expects a nest b on the ToS, and underneath that a sequence of numbers, words, or
nests, enclosed in a nest a, to search for in b. If a is a subsequence within b, it returns the
position of the start of first occurrence of a in b, and if not, returns the size of b.

/O> ' [12 13 14] ' [10 11 12 13 14 15] tuck findseq

... split

...

Stack: [10 11] [12 13 14 15]

 of 98 160

found (a b --> c)

found expects a nest, a, and a number, b, on the stack, and returns true if b is less than the
size of a, and false otherwise. found can be used in conjunction with find or findseq as
in this example, which searches for the string “found” in the nest of strings called names and
reports where it is in the nest, or if it was not in the nest.

/O> $ "found"

... dup names find

... dup names found iff [say "item number " echo]

... else [say "not found" drop]

... drop

...

item number 74

	 	

sortwith (a --> b)

sortwith takes a nest, a, and returns a nest, b, containing the same items as a in order. The
order is determined by the item following sortwith, which should take two items for
comparison, and return a boolean. So if sortwith is followed by <, the items in the nest will
be sorted so that each item is less than its predecessor.

/O> ' [4 2 1 3] sortwith <

...

Stack: [4 3 2 1]

In the implementation of Quackery presented here, sortwith is defined as an insertion sort,
the algorithm used when sorting playing cards into a hand, taking each card in turn and
inserting it into the correct position in a hand of cards.

[]'[sort.test put

 [] swap witheach

 [swap 2dup findwith

 [over

 sort.test share

 do] []

 nip stuff]

 sort.test release] is sortwith

sort (a --> b)

sort takes a nest of numbers, a, and returns a nest, b, with the same numbers as a in
ascending numerical order.

sort$ (a --> b)

sort takes a nest of strings, a, and returns a nest, b, with the same strings as a in ascending
QACSFOT order.

match.test match.nest sort.test (--> a)

These are ancillary stacks used by the searching and sorting words.

 of 99 160

User Input and Output

input sp cr emit echo$ wrap$ echo ding

The nature of Quackery’s connection to the outside world via the keyboard and the Terminal
app in which the shell runs is determined largely by the design criteria that it should be
portable between various environments, and that the implementation should be as simple as is
possible. As Python offers no simple and portable means of detecting or reading individual
keypresses, the fundamental unit of keyboard input is a line of text ending with the enter key
being pressed. Similarly, characters displayed in the Terminal are only reliably displayed when a
carriage return or equivalent is sent.

Additionally, while Python 3 supports Unicode, operating systems do not necessarily support
the full range of Unicode characters, and the complexities of distinguishing between control
characters, whitespace characters, combining characters, surrogates and so on and the
limitations inherent in a monospace font as typically used by Terminal apps has led to the
decision to support a minimal subset, namely the ASCII printable characters, the space, and
the carriage return.

The bell code (Unicode code point 7) is supported by the vast majority of operating systems if
not all (e.g. a system without audio capabilities would clearly not support it) and is useful in
alerting a user to, for example, the completion of a lengthy computation. As is not a character
so much as a piece of functionality which has been incorporated for historical reasons into the
character set, this has been implemented as a separate Quackery word (ding) which causes an
environmentally determined alert sound.

On operating systems that support it, the functionality of input is extended by importing the
Python 3 readline extension module, which enables use of the up and down arrow keys to
access a history of previously typed lines of text. This is a convenience for the Quackery
programmer using the shell that could not be otherwise implemented given the limitations
on detecting and reading keypresses.

input (a --> b)

input takes a string, a, outputs it to the terminal and awaits user input via the keyboard
terminated by the return or enter key, and returns the user input, not including the terminating
keypress as a string, b. As with all i/o, any character in a or b that is not a either a space,
carriage return or printable ASCII character (i.e. is not represented by 13 or a number in the
range 32 to 126 inclusive is replaced by ? (i.e. character number 63.)

(User input is indicated here by underlined text.)

/O> $ "What is your name? " input

... say "Welcome, " echo$ cr

...

What is your name? It is Arthur, King of the Britons.

Welcome, It is Arthur, King of the Britons.

sp (-->)

sp outputs a space character to the terminal.

cr (-->)

cr causes the terminal to start a new line for text output.

 of 100 160

emit (a -->)

emit outputs a character, a, to the terminal.

echo$ (a -->)

emit outputs a string of characters, a, to the terminal.

wrap$ (a b -->)

emit outputs a nest of strings, a, such as that created by nest$, to the terminal, starting on a
new line and without splitting a string over two lines. The number b specifies the maximum
number of characters displayed on a line. If a string within a is more than b characters long it
will be displayed on one line, exceeding the specified maximum number of characters.

echo (a -->)

echo outputs the top of stack, a, to the terminal. It uses unbuild to decompile a and then
displays the resulting string. Note when using echo to display numbers that unbuild
decompiles numbers in the current base, whereas build compiles numbers in decimal unless
temporarily overridden during compilation by use of the builder words hex or now!.

In this illustration, we will put the hexadecimal number FEED (i.e. decimal 65261) on the stack
first, then the decimal number 64206 (i.e. hexadecimal FACE) on top of it, then echo the ToS
in hexadecimal and the 2oS in decimal.)

/O> hex FEED (will be compiled as hexadecimal)

... 64206 (will be compiled as decimal)

... 16 base put (current base is now hexadecimal)

... echo sp

... base release (current base is back to decimal)

... echo sp

...

FACE 65261

 ding (-->)

ding causes a system dependant alert sound, assuming the system supports audio, system
alerts are enabled in the operating system and in the terminal app, and sound is not muted.

Note that some systems limit the number of alert sounds that can be made in rapid succession.
Also the system bell may not sound until a cr has been sent. This too is system dependant.

 of 101 160

File Management

putfile takefile sharefile releasefile replacefile loadfile

Files in Quackery are a variant on ancillary stacks, with two limitations. Firstly they can only
contain strings, and secondly they can contain at most one item. Unlike ancillary stacks they do
not need to be declared, so there is no equivalent to [stack] for files. If a file exists, it
contains one item. If the file is empty, it contains an empty string. Files that do not exist
contain zero items. To put something that is not a string into a file it should first be turned into
string of Quackery (a Quackscript) using quackify, so that loadfile, build, or quackery
can reconstruct the original item from it.

If the ancillary stack filepath is not empty, the string on the top of that stack will be
prepended to the file name passed as an argument to the File Management words.

putfile (a b --> c)

putfile attempts to put a string, a, in a file named b, where b is a string. If putfile
succeeds, (i.e. the file b did not already exist) then it returns true (1) to indicate success. If the
file b did already exist then it returns false (0), indicating an overflow condition.

Assuming the file pangram.txt does not already exist;

/O> $ "A very bad quack might jinx zippy fowls."

... $ "pangram.txt" putfile

... $ "Eight ducks with pyjamas squeeze in an overfull box."

... $ "pangram.txt" putfile

...

Stack: 1 0

Now the file pangram.txt exists and contains the text “A very bad quack might jinx
zippy fowls.” as indicated by the first invocation of putfile returning 1. It does not
contain the text “Eight ducks with pyjamas squeeze in an overfull box.” as
indicated by the second invocation of putfile returning 0.

takefile (a --> b c)

takefile attempts to remove a string, b, from a file named a, where a is a string. If the file
exists then b is the contents of the file, the file is deleted and c is true (1), indicating success.
If the file does not exist then c is false (0) and b is the name of the file, a.

Assuming that the file pangram.txt has been created as above;

/O> $ "pangram.txt" takefile

... echo sp echo$ cr

... $ "pangram.txt" takefile

... echo sp echo$ cr

...

1 A very bad quack might jinx zippy fowls.

0 pangram.txt

sharefile (a --> b c)

sharefile attempt to copy a string, b, from a file named a, where a is a string. If the file
exists then b is the contents of the file, the file is not deleted and c is true (1), indicating
success. If the file does not exist then c is false (0) and b is the name of the file, a.

 of 102 160

releasefile (a --> b)

releasefile attempt to delete a file named a, where a is a string. If the file existed then b is
true (1), indicating success. If the file did not exist then b is false (0).

replacefile (a b --> c)

replacefile attempt to replace the contents of a file named a, where a is a string, with a
string, b. If the file existed then c is true (1), indicating success. If the file did not exist then c
is false (0).

loadfile (a -->)

loadfile attempts to copy a Quackscript (a string of Quackery code) from a file named a,
where a is a string, to the stack, then build and do it. If the file does not exist then it will
display “file not found: "filename"” in the terminal, where filename is the string a.

Note that if there is a word in the names & actions dictionary that has the same name as the
file, loadfile will do nothing. This enables the programmer to create a Quackscript file that
will not load a second time in the same Quackery session, by having the Quackscript create a
word with same name as the file. By convention this should be the first word defined in the
file, and should be in the form:

[this] is myfile.qky

Exception Handling

protect backup]bailby[bail bailed message

history backupwords restorewords releasewords

protected fail

The construct “iff a else b” allows Quackery to choose between one of two options when
the correct choice is known in advance. The exception handling words cater for another
possibility, that it is impossible or impractical to determine the correct choice beforehand, so
you need to try a, and if that doesn’t work, put everything back the way it was and do b
instead. Putting everything back the way it was requires first making a backup of how things
are so that they can be restored later if necessary. In Quackery this means at least saving the
state of the system stacks; the stack, the return stack, and various ancillary stacks.  
 
Say that at some point, while doing a, it becomes apparent that this option either is or is not
working out as anticipated. So at that point in the code there will be “if bail” or an
equivalent construct, where true on the ToS indicates that a was the wrong choice. It could
be deeply nested, or inside an iteration – say times or witheach – wherever it becomes
apparent that a was not the right option to take, and option b should be taken instead. For the
sake of the following illustrative code, say that a expects 2 items on the stack.

2 backup a bailed if b

backup puts sufficient information on the history ancillary stack to enable bailed to revert
the protected ancillary stacks to their current state if bail is invoked while doing a, and to
exit a in an orderly fashion. To achieve this it needs to know how many stack items a expects
on the stack, (i.e. 2).

bailed removes the information left by backup from the history ancillary stack, reverts the
system stacks and returns true if bail was invoked, and false otherwise.

 of 103 160

protect (-->)

protect adds the ancillary stack that follows it to the nest of protected ancillary stacks that
backup uses.

[stack] is examplestack

 protect examplestack

backup (a -->)

a is the number of stack items that backup should copy to the history ancillary stack.
backup records the following information on history; a nest of currently protected ancillary
stacks, another nest of their sizes, the sizes of the protected ancillary stacks, copies of a stack
items, the size of the stack, the size of the return stack, and false, to indicate to bailed that
bail has not been invoked.

]bailby[(a -->)

See the Meta Control Flow section above for discussion of reverse bracketed (“meta”) words.
a is the number of nests that bail (or other words that invoke]bailby[) should exit from. It
works by removing the appropriate number of items from the return stack. For example,

5]bailby[is equivalent to]done[]done[]done[]done[]done[

nestdepth]bailby[will cause Quackery to exit. Use]bailby[with extreme caution.

bail (-->)

As described in the discussion of Exception Handling above. bail replaces the false on the
top of history with true to indicate that bail has been invoked and causes control flow to
move to immediately after the word or nest following the most recently evaluated backup,
consuming the return stack size info from the history ancillary stack.

bailed (--> a)

As described in the discussion of Exception Handling above. bailed clears the items left on
history by backup, and restores the stack, protected ancillary stacks and the list of protected
ancillary stacks to their former state if bail has been invoked. a is true if bail was invoked
and false otherwise.

message (--> a)

message is an ancillary stack. It is not protected and will not be reverted to a former state by
bailed. It can be used to convey information regarding why bail was invoked to the code
that is executed if bail was invoked. To extend the “2 backup a bailed if b” example
above to include a string to be displayed in the terminal as bailing information, if bail
would become;

if [$ "<insert reason for bailing here>" message put bail]

and 2 backup a bailed if b would become;

2 backup a bailed if [message take echo$ b]

build (described in the Building Words section, below) uses the message ancillary stack.

 of 104 160

history (--> a)

history is the ancillary stack used by backup to convey the necessary information from
backup to bailed to enable bailed to revert the system to the state prior to backup being
invoked if bail was invoked.

backupwords (-->)

restorewords (-->)

releasewords (-->)

backup and bailed only save and restore the states of the system stacks and protected
ancillary stacks. These words save and restore the state of the Quackery dictionaries by
copying them to and taking them from the history ancillary stack. build (described in the
Building Words section, below) uses them.

If, in the “2 backup a bailed if b” example above the behaviour of a includes modifying
the Quackery dictionaries (other than by invoking build) then

2 backup a bailed if b

should be extended to

backupwords

2 backup

a

bailed iff

 [restorewords b]

else releasewords

protected (--> a)

The ancillary stack protected carries a nest listing the ancillary stacks which are protected. At
startup, and until the nest has been modified by protect, they are;

filepath dip.hold depth times.start times.count times.action temp

base with.hold mi.tidyup mi.result to-do sort.test b.nesting

Note that protected is protected, but it not included in the list of protected stacks. Instead,
bailed deals with it as a separate action to ensure that it is restored at the correct time.

fail (a -->)

fail expects a string, a. It exits Quackery and raises a Python QuackeryError exception in
the same format as the exceptions raised by the Quackery virtual processor when it encounters
problematic code, where a is a description of the problem encountered.

/O> $ "This must be Thursday." fail

...

Quackery crashed.

 Problem: This must be Thursday.

Quackery Stack:

 Return stack: {[...] 0} {quackery 1} {[...] 26} {shell 5}
{quackery 1}

 of 105 160

To-do Stack

to-do new-do add-to now-do do-now not-do

To-do lists are a familiar idea; even if we do not write them down we often have in mind lists
of things to attend to when it is opportune; when we are at the shops, when we have some free
time, when it stops raining and so on. We notice that the stock of teabags is running low and
needs replenishing, a cake needs eating, the lawn needs mowing, and so on, so we add each to
its relevant list in order to do it later. 
 
Similarly, a program can detect that something or things will need to be done later, and
Quackery enables this with to-do stacks. It comes equipped with a to-do stack, called to-do.
More to-do stacks can be added if required, they are just ancillary stacks put to a particular use.

The first step is to initialise the to-do stack with new-do. Imagining that we have appropriate
word “buy” defined, which buys specified quantities of various items at a shop, we might
compose a to-do stack thus; (cakes, teabags and bananas in this hypothetical example each
put a stock-number on the stack, buy expects to find a quantity and a stock number on the
stack.)

to-do new-do

 2 cakes ' buy 2 to-do add-to

80 teabags ' buy 2 to-do add-to

 5 bananas ' buy 2 to-do add-to

The ' preceding buy puts the word buy on the stack, and the 2 tells add-do how many items
to take from the stack in addition to buy in readiness for when we get around to doing the to-
do stack.

Later, when we are at the shop, we can buy all the items added to to-do with

to-do now-do

In regular stack fashion, now-do will do the things on the to-do stack in last-in, first out-order,
and buy the bananas first, then the teabags, then the cakes. If the actions on a to-do stack
need to be done in the same order as they were added, then do-now should be used instead of
now-do. If the need to do a to-do stack vanishes, then not-do does the equivalent of
crumpling up a to-do list and tossing it in the wastepaper basket. 
 
Note that after applying now-do, do-now or not-do to a to-do stack, it will need to be
reinitialised with new-do before being used again. Also note that buy does not put anything
onto the stack. Words put on to to-do stacks must take the specified number of arguments
from the stack and must not return any results to the stack.

For a non-hypothetical example of the use of a to-do stack, see build and resolves in the
Building section, below.

to-do (--> a)

to-do is an ancillary stack, provided for use as a general purpose to-do stack.

new-do (a -->)

new-do expects an ancillary stack a and initialises it as a to-do stack by putting done on it,
which acts as a marker indicating that there are no more actions on this stack to be done by
now-do or do-now, or to be removed by not-do.

 of 106 160

add-to (a* b c d -->)

add-to puts an action to be performed, b, along with the zero or more stack items a* (the
number of items is indicated by c), onto an initialised to-do stack d. The action b (which can
be either a word or a nest) should expect c number of items on the stack, and leave zero items
on the stack.

For example, the builder word resolves adds the word replace to the to-do stack to-do,
along with the two items that replace will expect to find on the stack when it is performed.
The relevant line in the definition of resolves is

' replace 2 to-do add-to

(The overall stack effect of this line of code is to remove two items from the stack which have
been put there earlier in the definition. They are the stack items that replace expects.)

now-do (a -->)

now-do expects an initialised to-do stack a. It removes items from a put there by add-to or
new-to one at a time and performs each of them until it removes and performs the done left
there by new-to, which causes it to finish.

do-now (a -->)

do-now has the same functionality as now-do, except that it performs the actions on the to-do
in the same order as they were added by add-to.

not-do (a -->)

not-do expects an initialised to-do stack a. It clears items from a down to and including the
first done that it encounters, deinitialising it.

Internal Representation

quid operator? number? nest? name? named? builder? immovable

quid (a --> b)

quid (“Quackery Identifier”) returns a number, b, which is uniquely associated with the
Quackery item (number, operator, or nest) a. The quid of a Quackery item will remain the
same during the lifetime of the object, but not over multiple uses of Quackery. (i.e. if you run
Quackery now,

' dup quid echo

might leave 4483186472 on the stack, but if you leave the shell and run Quackery again, it
might leave 4380065576 on the stack this time.)

See the description of oats, (defined as [quid swap quid =] is oats) for some
discussion of when two Quackery items are distinct from one another, and when they will
return the same identifier.

operator? (a --> b)

operator? takes an item a and returns true if a is an operator, and false otherwise.

 of 107 160

number? (a --> b)

number? takes an item a and returns true if a is a number, and false otherwise.

nest? (a --> b)

nest? takes an item a and returns true if a is a nest, and false otherwise.

name? (a --> b)

name? takes a string a and returns true if a is the name of a Quackery word, and false
otherwise.

named? (a --> b)

named? takes an item a from the stack and returns true if it is of a Quackery word, and
false otherwise.

builder? (a --> b)

builder? takes a string a and returns true if a is the name of a Quackery builder, and false
otherwise.

immovable (-->)

Attempting to take one more item from an ancillary stack than the ancillary stack contains will
cause Quackery to crash.

/O> [stack 3 4 5] is example

... example take echo sp

... example take echo sp

... example take echo sp

... example take echo sp

...

5 4 3

Quackery crashed.

 Problem: Cannot remove immovable item.

This is because stack is defined as an immovable nest. An immovable nest has the word
immovable as its zeroth item.

[immovable]this[]done[] is stack (--> s)

immovable is a no-op; performing immovable does nothing. It exists to prevent the ancillary
stack words take, release, and replace (which releases an item before putting a new
item in its place) from removing too many items from an ancillary stack, which would cause
Quackery to crash in a way that would be difficult to debug.

As tables can be modified on the fly using ancillary stack words, table is also an immovable
word, by virtue of having immovable as its zeroth item.

[immovable

 dup -1 > if 1+

]this[swap peek

]done[] is table (n --> x)

 of 108 160

Dictionary

names actions builders jobs namenest actiontable buildernest jobtable

Quackery has two dictionaries, which associate the words that make up Quackscript with the
behaviours of those words. The larger of the two dictionaries is the names & actions
dictionary. The names nest, which resides on the ancillary stack namenest, contains the words
that represent the regular Quackery words such as dup, /mod, again, split, ding, takefile,
and so on. actions is a table with holds the operators, nests or numbers, of those words.

The smaller of the two dictionaries is the builders & jobs dictionary. The builders nest
resides on the ancillary stack buildernest, and jobs is a table. Both are similar in function
to their names & actions equivalents, but hold the words and behaviours of directives for the
Quackery compiler, build. These are [,], is, builds, (,), forward, resolves, char, $,
say, hex, and now!.

The behaviour of build is covered in more detail below, but briefly, it finds the position of
each word in a Quackscript in either builders or names passes that position to either
actions or jobs respectively, which return the associated operator, nest, or number to be
appended to the current nest being compiled, in the case of regular Quackery words, or
performed using do in the case of compiler directives.

The tables; actions and jobs, can be searched with find and extended using put, via
actiontable and jobtable, which inhibit their table behaviour by quoting them.

names (--> a)

a is the nest of strings that contains the names of regular Quackery words, ordered from most
recently defined to first defined.

/O> names 65 wrap$

... cr names size echo $ " names" echo$

...

quackify replacefile takefile loadfile words empty wrap$ leave

shell echostack echoreturn return$ echo unbuild nesting quackery

build releasewords restorewords backupwords unresolved b.to-do

b.nesting message jobtable jobs builder? builders buildernest

reflect named? actiontable actions name? names namenest nest$

oats bailed bail backup history shuffle random randomise

initrandom prng prng.d prng.c prng.b prng.a rot64 64bits

64bitmask $->n char->n sort$ $> $< qacsfot sort sortwith

sort.test not-do do-now now-do add-to new-do to-do unpack pack

reverse nextword trim printable found findwith matchitem

mi.result mi.tidyup echo$ witheach makewith with.hold number$

decimal base digit lower upper sp space cr carriage findseq

behead stuff pluck of table temp step refresh conclude i^ i times

times.action times.count times.start abs decurse depth 2over

2swap dip dip.hold protect protected nested move tally replace

release share stack while until recurse do this ' copy clamp max

min else iff if done again 2drop 2dup within unrot tuck bit mod

nip / - < xor != or and not true false sharefile releasefile

putfile filepath input ding emit quid operator? number? nest?

size poke peek find join split [] take immovable put]bailby[

]do[]this[]'[]else[]iff[]if[]again[]done[over rot swap

drop dup return nestdepth stacksize time ~ ^ | & >> << ** /mod *

negate + 1+ > = nand fail python

215 names

 of 109 160

actions (--> a)

a is the table of behaviours associated with the regular Quackery words, ordered as with
names.

/O> 0 actions echo say " >>> " 211 actions echo

...

quackify >>> fail

builders (--> a)

a is the nest of strings that contains the names of the compiler directive words, ordered from
most recently defined to first defined.

/O> builders 65 wrap$

... cr builders size echo $ “ builders” echo$

...

constant now! hex say $ char resolves forward) (builds is] [

14 builders

jobs (--> a)

a is the table of behaviours associated with the compiler directive words, ordered as with jobs.

/O> 0 jobs echo say " >>> " 13 jobs echo

...

[over [] = if [[[]'[] [34 99 111 110 115 116 97 110 116 34 32
110 101 101 100 115 32 115 111 109 101 116 104 105 110 103 32 98
101 102 111 114 101 32 105 116 46]] message put bail] dip [-1
pluck do dup number? not if [' ' nested swap nested join nested]
join]] >>> [[[]'[] [91]] b.nesting put [] swap]

(Note that, unlike the illustrative code for actions, where we see the names of the behaviours
echoed, here we see the decompiled behaviours. This is because unbuild, which echo uses to
find the names associated with operators and named nests, only searches the names &
actions dictionary, so does not find constant or [, the zeroth and thirteenth items in the
jobs table, and therefore assumes they are nameless and decompiles them.)

namenest (--> a)

namenest is the ancillary stack on which names resides.

actiontable (--> a)

actiontable puts a pointer to actions on the stack so it can be searched with find and
extended with put.

buildernest (--> a)

buildernest is the ancillary stack on which builders resides.

jobtable (--> a)

jobtable puts a pointer to jobs on the stack so it can be searched with find and extended
with put.

 of 110 160

Building

build quackery

[] is builds forward resolves char $ say hex now! ()

unbuild quackify

unresolved nesting b.nesting b.to-do

Building is the Quackery term for assembling or compiling a program from the source text
(“Quackscript”).

build (a --> b)

build takes a string a, the Quackscript, and returns a nest, b, which can be performed by do
to “run the program.”

Any string a is a valid Quackscript, in the sense that build will always return a nest b that can
be performed by do. However, the majority of possible strings will return a nest that reports a
problem with the string. (Here we assume that “rinnzekete” has not been defined as a
Quackery word, which can be classified as problematic; in this case the problem probably
being a mismatch of expectation and reality on the part of the programmer.)

/O> $ "21 21 + echo rinnzekete"

... build dup echo cr cr

... do

...

[' [85 110 107 110 111 119 110 32 119 111 114 100 58 32 114 105
110 110 122 101 107 101 116 101] echo$]

Unknown word: rinnzekete

Another possible problem is having a [without a corresponding].

/O> $ "[1764 42 / echo"

... build dup echo cr cr

... do

...

[' [85 110 102 105 110 105 115 104 101 100 32 110 101 115 116
46] echo$]

Unfinished nest: [

There are nineteen ways in which Quackscripts can be problematic, including containing an
unknown word and having an unfinished nest. The other seventeen are discussed in the
descriptions of the builder words below.

When a problem is detected, either by build or by a builder word, compilation is ceased
immediately by bail being invoked, resetting any protected ancillary stacks in use and the
nest in protected to their state prior to bailing. This does not include the message ancillary
stack, which is used to carry a description of the problem encountered (e.g. “Unknown word:
rinnzekete” or “Unfinished nest: [”) to the code at the end of build that is performed
when bail is invoked. In addition to using the exception handling words backup and bailed
to restore the states of various stacks, build uses backupwords, restorewords, and
releasewords to restore any changes made to the dictionaries by builder words. Also, the
b.to-do ancillary stack is initialised as a to-do stack ready to convey actions necessary to
revert any other changes to the system not covered by the exception handling words. See
resolves for an example of this.

 of 111 160

The process of building a nest occurs in three phases, the setup phase, the main loop and the
clean-up phase.

During the setup phase build prepares for bail to be invoked, puts an empty string on the
ancillary stack b.nesting and initialises the to-do stack b.to-do (see below for discussion of
these), uses decimal to put 10 on the ancillary stack base, and puts an empty nest, “the target
nest”, on the stack underneath the Quackscript string a, “the source text”. This will become
the returned nest, b.

In the main loop, build removes any leading whitespace from the source string with trim,
checks to see if it is now an empty string, which ends the loop, then removes the first word it
encounters from the Quackscript with nextword and attempts to process it.

It searches the builders & jobs dictionary first, and if it finds the word, it does the
associated job and then restarts the main loop. 
 
If the word is not a building word, it searches the names & actions dictionary, and if it finds
the word, appends it to the target nest with nested join and then restarts the main loop. 
 
If it has not found the word in either dictionary, it attempts to parse it as a decimal number
with $->n. If this is successful it appends the number to the target nest and then restarts the
main loop.

If the word is not in either dictionary and is not a number, then it is an unknown word, and
bail is invoked with an appropriate problem report on the message ancillary stack.

The clean-up phase first checks the nesting ancillary stack to ensure that the nests are well
formed (and if not, invokes bail with an appropriate problem report), and releases the
base ancillary stack.  
 
Then it checks if bail has been invoked with bailed. If bail was invoked, it performs any
actions on the b.to-do stack, constructs an appropriate problem report nest to return, and
restores the dictionaries. Otherwise it clears the b.to-do stack and releases the dictionary
backups, leaving a successfully compiled nest on the stack.

Notes

Dictionaries are searched from most recently added to least recently added, so when a word is
added to either dictionary that is the same as one already present, the new one will be found by
build thereafter.

Because build searches for builder words before regular Quackery words, the builder words
are effectively reserved, as while it is possible to define a regular Quackery word with the same
name as a builder word, it will not override the builder word.

Because the dictionaries are searched before attempting to parse a word as a decimal number, it
is not a good idea define a word with only the digits 0 to 9 in its name.

quackery (a -->)

[build do] is quackery

Quackery in a nutshell. 

 of 112 160

The builders, [,], is, builds, (,), forward, resolves, char, $, say, hex, constant, and now! are
invoked by build when it encounters them in a Quackscript.  
 
Discussion of the builders will refer to their definitions in the source code, where they are named b.[,
b.[, b.is, b.builds, b.(, b.), b.forward, b.resolves, b.char, b.$, b.say, b.hex, b.constant.
and b.now! respectively. These names are used to differentiate them from the equivalent compiler
directives used by the Python Quackery compiler (i.e. the one defined using Python code) build(),
which exists solely to build the predefined words in Quackery that are not primitives. The Python
Quackery compiler is discussed elsewhere. This discussion relates to the Quackery Quackery compiler
(i.e. the one defined using Quackery code) build. 
 
Unlike the Python Quackery compiler, build(), The Quackery Quackery compiler, build, can be
extended by adding new builders using builds. Builders must comply with The Building Regulations.

The Building Regulations

• When a builder is invoked, the top of stack will be a string of Quackscript (the source string)
and the second on stack will be a nest under construction (the target nest). This should still be
the case after the builder has done its job. 

• Builders that use text from the Quackscript string on the ToS should check for problematic
Quackscript (for example, if a builder requires some text but the string is empty then there is a
problem) and if a problem is found should report it by putting a descriptive string on the
message ancillary stack and invoking bail. Examples of this can be found in the definitions of
is, builds, (, forward, resolves, char, $, and hex. 

• Builders that use items from the nest under construction, (2nd on Stack) should check for
problematic nests (for example, if a builder requires the nest to contain at least one item but
the nest is empty then there is a problem) and if a problem is found should report it by putting
a descriptive string on the message ancillary stack and invoking bail. Examples of this can be
found in the definitions of is, builds, and resolves. 

• Embracing builders that, for example, start and end the construction of a nest, as [and] do,
should make use of the ancillary stack b.nesting to ensure that the nesting in the Quackscript
is properly balanced. To do this, the builder that starts an embrace (an “opening brace”) should
put a string containing its name on b.nesting, and the builder that ends the embrace (a
“closing brace”) should take the top of b.nesting and check that it is a name that should be
there. For example,] expects the string “[” to be on b.nesting.  
 
If a closing brace finds an empty string on b.nesting it should report that with the
descriptive message “Unexpected "x".”, where x is the closing brace’s name, and if it finds
an unacceptable string y on b.nesting it should report that with “Nest mismatch: y x” for
consistency with other problem reports generated in this manner. An example of this
behaviour can be found in the definition of]. 
 
Embraces are not restricted to pairs of builders; more complex relationships are permitted.
(For example a nesting structure that brings Regex type functionality might permit one or more
centre braces with a behaviour that reflects the functionality of the regex alternation operator.)
Any nesting structure must be able to be validated by use of the b.nesting ancillary stack. 

• Builders that modify parts of Quackery that are not backed up by the Exception Handling
words used in build should provide a recovery mechanism using the to-do stack b.to-do to
undo their modifications if bail is invoked by another builder or by build later in the
compilation. An example of this behaviour can be found in the definition of resolves.

 of 113 160

[(a --> b a)

The builder [is the opening brace of the matched pair [and]. It places an empty nest b
underneath the source string a, making b the target nest.

In accordance with The Building Regulations it puts the string “[” on the ancillary stack
b.nesting.

] (a b c --> d c)

The builder] is the closing brace of the matched pair [and]. It appends the target nest b to
the previous target nest a using nested join, making the target nest d, which is underneath
the source string c.

In accordance with The Building Regulations it takes a string from the ancillary stack
b.nesting. It that string is empty, it invokes bail, reporting “Unexpected "]".” via the
ancillary stack message.

If the string is not empty and is not “[” it invokes bail, reporting “Nest mismatch: y]”,
where y is the string that was on b.nesting. (Note that for this to occur a second matched
pair of builders would have to be defined – [and] is the only matched pair that Quackery has
predefined.)

is (a b --> c d)

The builder is extends Quackery by (1) removing the item most recently added to the target
nest, a, and adding it to the front of the actions table and (2) removing the next word from
the source text, b, and adding it to the front of the names nest. c and d are the modified target
nest and source text respectively.

In accordance with The Building Regulations, is reports the following problems.

If the target nest is empty, it reports “"is" needs something to name before it.”

If the source string is empty or contains only whitespace, it reports “"is" needs a name
after it.”

builds (a b --> c d)

The builder builds extends the Quackery compiler by (1) removing the item most recently
added to the target nest, a, and adding it to the front of the jobs table and (2) removing the
next word from the source text, b, and adding it to the front of the builders nest. c and d are
the modified target nest and source text respectively.

In accordance with The Building Regulations, build reports the following problems.

If the target nest is empty, it reports “"build" needs something to name before it.”

If the source string is empty or contains only whitespace, it reports “"build" needs a name
after it.”

 of 114 160

forward and resolves provide a mechanism to create more complex recursive structures than are
within the capability of recurse and decurse. One example of this is mutually recursive words. 

Mutual recursion can be illustrated with two words, odd and even.

Oddness and evenness for non-negative whole numbers can be defined by asserting that such numbers
are either even or odd, that 0 is an even number, that a number one less than an odd number is an even
number, and that a number one less than an even number is an odd number.

The word odd takes a non-negative number and returns true if the number is odd, and false if the
number is even.

The word even takes a non-negative number and returns true if the number is even, and false if the
number is odd. 

If the number passed to odd is 0, it returns false. Otherwise it subtracts one from the number and
passes it to even. It can be defined with: 

[dup 0 =

 iff [drop false]

 else [1 - even]] is odd (n --> b)

 
If the number passed to even is 0, it returns true. Otherwise it subtracts one from the number and
passes it to odd. It can be defined with: 

[dup 0 =

 iff [drop true]

 else [1 - odd]] is even (n --> b)

However, these definitions have a problem. The definition of odd assumes that even is defined, and
the definition of even assumes that odd is defined. Whichever we define first will report that the other
is undefined. The way around this dilemma is with forward and resolves, which allow a word to be
named before it is defined. 

 forward is odd

[dup 0 =

 iff [drop true]

 else [1 - odd]] is even (n --> b)

[dup 0 =

 iff [drop false]

 else [1 - even]] resolves odd (n --> b)

forward (a b --> c b)

The builder forward appends the nest [unresolved] to the target nest a, ready to be
removed by is and returning the updated target nest c.

If you need to use the builders forward and resolves when defining a new builder, do not
use the phrase “forward builds my-new-builder” as it will not work as you may
anticipate.

Instead use “forward is my-new-builder”, and then use the phrase “my-new-builder
builds my-new-builder” after “resolves my-new-builder”, which may seem odd, and
leaves a redundant entry in the names and actions dictionary, but does work.

 of 115 160

resolves (a b --> c d)

The builder resolves modifies a word defined with forward is by replacing the
unresolved in its definition with the item most recently added to the target nest, a. It expects
to find the name of an unresolved forward word at the front of the source text b. c and d
are the target nest and source text with the most recent item and the name removed.

In accordance with The Building Regulations, resolves has the following behaviours.

If the target nest is empty, it reports “"resolves" needs something to resolve.”

If the source string is empty or contains only whitespace, it reports “"resolves" needs a
name to resolve into.”

If the word that follows it in the source string is not defined, it reports “Unknown word
after "resolves": x”, where x is the undefined word.

If the word that follows it in the source string is defined, but the definition is not
[unresolved], it reports “"x" is not an unresolved forward reference.”, where
x is the incorrectly defined word.

If the name that follows it in the source text is an unresolved forward word, in addition to
replacing the unresolved in its definition, it adds a nest that will undo that replacement to the
to-do stack b.to-do, as that is a modification that is not automatically reverted when bail is
invoked.

char (a b --> c d)

The builder char takes the next printable character from the source text b and appends the
number representing its Unicode code point to the target nest a, returning the updated target
nest c and source text d.

/O> char A emit

... char B emit

... char C emit

...

ABC

In accordance with The Building Regulations, resolved reports the following problem.

If the source string is empty or contains only whitespace, it reports “"char" needs a
character after it.”

$ (a b --> c d)

The builder $ creates a string from the characters that follow it in the source text b and
appends a nest that will place that string on the stack to the target nest a, returning the updated
target nest c and source text d.

In detail, the string it creates consists of the all characters in the source text between the first
and second instance of the delimiting character. The delimiting character is the first printable
character following $. Typically the delimiting character might be " or ', but it can be any of
the 94 printable characters that Quackery recognises. Thus $ "this", $ 'is', $ |a|, and

$ QstringQ are all valid representations of strings, and represent the four strings this, is, a,
and string.

 of 116 160

The nest $ compiles is of the form illustrated by the following shell dialogue.

/O> ' $ "A B

... C D"

... dup echo cr

... do echo$

...

[' [65 32 66 13 67 32 68]]

A B

C D

The rationale for $ compiling a single nest rather than compiling a ' followed by a string (e.g. [
65 32 66 13 67 32 68]) is that this allows tables of strings to be created as per the
following illustrative code.. day$ returns the name of a day as a string. The argument n is the
number of days since a Sunday.

	 [7 mod

 [table $ "Sunday" $ "Monday"

 $ "Tuesday" $ "Wednesday"

 $ "Thursday" $ "Friday"

 $ "Saturday"] do] is day$ (n --> $)

Note that when a nest created with $ is quoted using ' or included in a table it is necessary to
use do to convert the nest placed on the stack into a string.

In accordance with The Building Regulations, $ reports the following problems.

If the source string is empty or contains only whitespace, it reports “"$" needs to be
followed by a string.”

If there is no second instance of the delimiting character, it reports “Endless string
discovered.”.

say (a b --> c d)

say has the same functionality as $, except that instead of leaving the string that follows it on
the stack, it echoes it to the screen. Also, it reports "say" needs to be followed by a
string., instead of "$" needs to be followed by a string.

The nest that say compiles is of the form [' [65 32 66 13 67 32 68] echo$]

hex (a b --> c d)

The builder hex adds the hexadecimal number that follows it in the source text b to the target
nest a, returning the updated target nest c and source text d. A hexadecimal number is
represented by an optional - sign, followed by one or more hexadecimal characters, which are
the digits 0 to 9 and the letters A to F and a to f. Both the upper case and lower case letters
represent the hexadecimal digits equal to 10 to 15 in decimal.

In accordance with The Building Regulations, hex reports the following problems.

If the source string is empty or contains only whitespace, it reports “"hex" needs a number
after it.”

If the printable characters following hex are not a valid hexadecimal number it reports “"xyz"
is not hexadecimal.”, where xyz is the invalid text.

 of 117 160

constant (a b --> c d)

The builder constant removes the item most recently added to the target nest a and does it,
returning the updated target nest c. The item it does should leave a single item on the stack
(--> x), and otherwise be in accordance with The Building Regulations. The item x will be
added to the target nest a as a literal.

To illustrate this, the word smallprime returns true if a is a prime number less than 1000,
and false otherwise. (By definition only positive integers can be prime, hence the 0 max.)

 [0 max bit

 [0

 ' [2 3 5 7 11 13 17 19 23 29 31 37

 41 43 47 53 59 61 67 71 73 79 83 89

 97 101 103 107 109 113 127 131 137 139 149 151

 157 163 167 173 179 181 191 193 197 199 211 223

 227 229 233 239 241 251 257 263 269 271 277 281

 283 293 307 311 313 317 331 337 347 349 353 359

 367 373 379 383 389 397 401 409 419 421 431 433

 439 443 449 457 461 463 467 479 487 491 499 503

 509 521 523 541 547 557 563 569 571 577 587 593

 599 601 607 613 617 619 631 641 643 647 653 659

 661 673 677 683 691 701 709 719 727 733 739 743

 751 757 761 769 773 787 797 809 811 821 823 827

 829 839 853 857 859 863 877 881 883 887 907 911

 919 929 937 941 947 953 967 971 977 983 991 997]

 witheach

 [bit |]] constant

 & 0 >] is smallprime (n --> b)

smallprime works by converting the number n to a bit pattern where every bit is 0 except for
the nth bit, and comparing it to a bit pattern where every bit is zero unless the bit position
corresponds to a prime number less than 1000. Expressed as a decimal number it is 301 digits
long.

As this is a somewhat cumbersome number to put in a Quackery word it is computed from a
nest of the prime numbers less than 1000 (the section of the definition that starts [0 and
ends bit |]]). Performing this computation every time the word smallprime is invoked is
pointless as it always returns the same number, so it is followed by the word constant,
indicating that it can be computed once, during compilation.

We can confirm that this has happened by decompiling smallprime in the shell.

/O> ' smallprime copy

...

Stack: [bit
1360396709629698212581594767974700056400491703929229463506337903156
3183503598513586036297222193352555538909171790625246962409298703309
8638245598338502064276858734705184535549642030768571939159874046323
9251581515774735157478399074962378414221254602604809196179277244169
127525629985231081713895503177900 & 0 >]

In accordance with The Building Regulations, constant reports the following problem.

If the target nest a is empty it reports “"constant" needs something before it.”

 of 118 160

now! (a b --> c d)

The builder now! removes the item most recently added to the target nest a and does it,
returning the updated target nest c. The behaviour of the item it does should be in accordance
with The Building Regulations.

/O> [$ "starting compilation" echo$ cr] now!

... $ "performing target nest" echo$ cr

... 10 times [i^ echo sp] cr

... [$ "ending compilation" echo$ cr] now!

...

starting compilation

ending compilation

performing target nest

0 1 2 3 4 5 6 7 8 9

((a --> b)

The builder (removes characters from the source text until it finds and removes a) which is
not adjacent to a printable character.

In accordance with The Building Regulations, $ reports the following problems.

If it does not find a) without adjacent printable characters it reports “Unfinished
comment.”

) (-->)

The builder) does not need to be defined, or could do nothing, but instead it has the
punctilious and arguably pernickety behaviour of invoking bail with the message
“Unexpected ") ".”

Quackery comments are wrapped in the builders (and). (and) are not an embracing pair in the
sense described in The Building Regulations as they are non-nesting.

(Below is some code that has been commented

 out ...)

([swap rot] is twist (a b c --> c b a)

(Note that the non-nesting behaviour allows

 the code to be commented out with just the

 "(" at the start as the comment is ended

 by the ")" at the end of the stack comment.

 Also note that the closing parenthesis in

 the previous sentence does not end this

 comment as it is adjacent to printable

 characters, namely the quotation marks on

 either side of it.)

 of 119 160

unbuild (a --> b)

unbuild is the Quackery decompiler. It takes a Quackery object a and returns a string of
Quackscript b that will recompile as a if passed to build.

Limitations

• unbuild does not handle nests created by intemperate use of Ancillary Stack words well.
It does not detect endless loops and will attempt to construct a string of infinite length,
which will eventually cause Python to crash in an undignified manner unless the user
presses Control C and terminates the program abruptly in the meantime. 
 
This can be ameliorated by putting a small positive number on the ancillary stack
nesting. (nesting release should be invoked afterwards to restore unbuild to its
default behaviour.) This will limit the depth of nesting that unbuild decompiles to, with
nests beyond the limit being represented by “[...]” in the returned string. If this
happens build will not be able to recompile a from the returned string.

• unbuild cannot infer that builders other than [and] were employed in the construction
of a nest passed to it, so the returned string will not have niceties such as comments,
strings will be represented as for example [' [65 66 67]] rather than $ "ABC"
and so on.

quackify (a --> b)

quackify takes an item a and returns a Quackscript b. b would recreate a if passed to
quackery or loaded from a file by loadfile.

quackify uses unbuild to generate the Quackscript, so shares its limitations.

unresolved (-->)

unresolved causes Quackery to fail with a Python QuackeryError exception describing
the problem as “Unresolved reference.”

nesting (--> a)

nesting is an ancillary stack which can be used to restrict the depth of nesting decompiled by
unbuild.

b.nesting (--> a)

b.nesting is an ancillary stack used by build.

b.to-do (--> a)

b.to-do is a to-do stack used by build.

Time

time

time (--> n)

n is the number of microseconds since the Unix epoch (00:00:00 UTC, 1st of January 1970).
Accuracy is system dependant, and not guaranteed to be better than to the second.

 of 120 160

Development Tools

empty words shell leave stacksize echostack nestdepth return return$
echoreturn python

empty (... x y z -->)

empty drops every item from the stack.

words (-->)

words displays a list of all the Quackery names, followed by the builders. Both lists are ordered
from first defined to most recently defined.

shell (-->)

shell is an interactive language shell or REPL (“Read Evaluate Print Loop”).

It is an endless loop that initially displays a duck’s head prompt /O> to indicate it is awaiting
user input, and accumulates a string of entered Quackscript line by line, displaying the
continuation prompt ... , until the user presses enter twice. It passes the entered Quackscript
to quackery, invokes echostack (below) with nesting set to 5, and then loops.

leave (-->)

leave is used to leave the shell by breaking out of its endless loop.

stacksize (--> a)

stacksize returns the number of items on the stack.

echostack (-->)

 If the stack is empty, displays the text “Stack empty.”, otherwise displays the text “Stack: ”
followed by the contents of the stack, with each item decompiled with unbuild.

nestdepth (--> a)

nestdepth returns the number of address pairs on the return stack. As with most processors,
the virtual Quackery processor keeps track of where it has got to by means of a return stack,
(a.k.a. call stack). Typically an address is a location in memory, but as Quackery is based on a
memory model implemented as dynamic arrays (i.e. nests), an address pair consists of a pointer
to a nest and an offset to an item within the nest, akin to a street name and house number.

return (--> a)

return puts a nest containing a copy of the return stack on the stack.

return$ (--> a)

return$ returns a representation of the return stack with address pairs wrapped in curly
brackets “{”and “}” and unnamed nests indicated by “[...]”

echoreturn (-->)

echoreturn is equivalent to return$ echo$.

 of 121 160

python ($ -->)

python is an instance of an implementation dependant word. The names and behaviours of
implementation dependant words can, as the name suggests, vary from implementation to
implementation of Quackery, but generally their purpose is to allow access to aspects of
computing which are beyond the scope of the other words in Quackery, at the cost of
portability. Any implementation of Quackery which includes implementation dependant words
should document their names and behaviours.

python takes a string of valid pythonscript and evaluates it. The python functions
to_stack(), from_stack(), string_to_stack(), and string_from_stack() are
provided to enable passing data between Quackery and Python 3.

to_stack() and from_stack() can be used to pass numbers, and nests of numbers and
nests (in Python; ints, and lists of ints and lists) via the stack. string_to_stack() and
string_from_stack() gives the same facility for strings, converting between Quackery
strings (i.e. nests of numbers within the valid range for characters) and the Python 3 string data
type. 
 
To illustrate python, we will use it to add some turtle graphics words to Quackery by accessing
the Python 3 turtle library. To differentiate it from Python 3 turtle graphics, as some of the
functionality differs, we will call it “Turtle Duck”. Note that it may not work on some versions
of PyPy3. (It does work on the most recently tested version on Mac OS.) Try updating PyPy3.
It should be fine using the Python 3 implementation available from www.python.org on any
operating system that supports the Python 3 turtle library.

 [$ "bigrat.qky" loadfile] now!

 [this] is turtleduck.qky

Python Turtles expect distances and angles to be floating point numbers. Turtle Duck will take
rational numbers and convert them to floating point approximations for Python’s benefit, so it
is considerate to ensure that the rational number extension bigrat.qky is available, even
though turtleduck.qky itself does not require it.

 [1 11 clamp

 dup 11 = if [drop 0]

 $ \

import turtle

turtle.speed(from_stack())

 \ python] is speed (n -->)

turtle.speed() controls how quickly the turtle moves. It takes an integer in the range 0 to
10, with 1 being the slowest speed, 2 being slightly faster, all the way up to 10, which is the
second fastest, and then 0 indicates full speed. Turtle Duck speeds start at 1 and go up to 11.

Noteworthy points about the Python code are;

• it is in a Quackery string delimited with the backslash character because that character occurs
infrequently in Python script,

• it is outdented from the Quackery script because Python indentation has to start with the
text abutting the left margin,

• import turtle is in every fragment because it turns out that Python needs constantly
reminding about libraries. Fortunately turtles are persistent objects that last as long as the
graphics window is open.

 of 122 160

 [$ \

import turtle

a = from_stack()

b = from_stack()

turtle.pendown()

turtle.forward(b/a)

 \ python] is walk (n/d -->)

 [$ \

import turtle

a = from_stack()

b = from_stack()

turtle.penup()

turtle.forward(b/a)

 \ python] is fly (n/d -->)

Rather than following the convention for ground based turtles that they leave a trail whilst
moving if a state variable (the pen) is set to down rather than up, turtle ducks always leave a
trail if they walk, and never leave a trail when they fly. In both instances, the distance they
travel is specified as a rational number, so for example 100 3 fly would move the turtle a
distance of 33.333… pixels forwards, rounded to the nearest floating point approximation.

 [$ \

import turtle

a = from_stack()

b = from_stack()

turtle.right(360*b/a)

 \ python] is turn (n/d -->)

Turtle ducks turn clockwise by some fraction of a full circle, so 1 4 turn would rotate the
turtle duck by 90 degrees to the right.

 [$ \

import turtle

a = from_stack()

b = from_stack()

c = from_stack()

d = from_stack()

turtle.pendown()

turtle.circle(d/c, 360*b/a)

 \ python] is arc (n/d n/d -->)

100 3 1 4 arc will make the turtle duck draw an approximation to a 90º arc of a circle of
radius 33.333… pixels.

 [$ \

import turtle

a = from_stack()

b = from_stack()

c = from_stack()

d = from_stack()

turtle.penup()

turtle.circle(d/c, 360*b/a)

 \ python] is flarc (n/d n/d -->)

The same as arc, but without leaving a trail. The turtle duck flies round the bend.

 of 123 160

[2dup fly

 -1 4 turn

 2dup 1 1 arc

 1 4 turn

 dip negate fly] is circle (n/d -->)

The turtle duck draws an approximation to a circle of the specified radius. Its start and end
position is at the centre of the circle.

 [$ \

import turtle

turtle.width(from_stack())

 \ python] is wide (n -->)

The number n specifies the width of the trail drawn by a walking turtle duck.

 [$ \

import turtle

a = from_stack()

turtle.color(a[0], a[1], a[2])

 \ python] is colour ([-->)

The colour of the trail dawn by a walking turtle duck is specified by a nest of three numbers in
the range 0 to 255 inclusive, which indicate the red, green and blue content of the colour. For
convenience colours could be named thus: [' [255 0 255]] is magenta (-- [).

 [$ \

import turtle

a = from_stack()

turtle.fillcolor(a[0] ,a[1], a[2])

turtle.begin_fill()

 \ python

]'[do

 $ \

import turtle

turtle.end_fill()

 \ python] is fill ([-->)

fill performs the item that follows it, which should be instructions to the turtle duck to walk
or fly around a path, and then fills the path with the specified colour. For example, assuming
magenta is defined as above, the following will draw a magenta square 100 pixels by 100 pixels.

magenta fill [4 times [100 1 fly 1 4 turn]]

Note that fill is not very smart. If the item following it includes a fill it will probably not
behave as you might hope. Nested fills are best avoided.

 [$ \

import turtle

turtle.showturtle()

 \ python] is show (-->)

 [$ \

import turtle

turtle.hideturtle()

 \ python] is hide (-->)

show and hide control the visibility of the turtle duck.

 of 124 160

 [$ \

import turtle

turtle.clearscreen()

turtle.colormode(255)

 \ python] is clear (-->)

Erase everything in the turtle duck window.

 [$ \

import turtle

turtle.title("Turtle Duck")

 \ python

 clear

 hide

 11 speed] is turtle (-->)

The first command to use when drawing with the turtle duck. Creates a window and uses hide
and 11 speed to ensure it is a fast as Python permits. Closing the window and then issuing a
turtle duck instruction will cause Quackery to report an unnamed Python problem.

 [turtle

 16 times

 [60 times

 [310 1 walk

 23 60 turn]

 1 16 turn]] is demo (-->)

demo should draw this image.

 of 125 160

Quackery in Python

[quackery]

import time

import sys

import os

import types

try: # note 1

 import readline

except:

 pass

class QuackeryError(Exception):

 pass

def quackery(source_string):

 """ Perform a Quackery program. Return the stack as a string. """

 def failed(message):

 traverse(build(""" stacksize pack # note 2

 decimal unbuild

 return$

 nestdepth]bailby["""))

 returnstack = string_from_stack()

 thestack = string_from_stack()

 raise QuackeryError('\n Problem: ' + message + # note 3

 '\nQuackery Stack: ' + str(thestack)[2:-2] +

 '\n Return stack: ' + str(returnstack))

 def isNest(item): # note 4

 return isinstance(item, types.FunctionType)

 def isNumber(item):

 return isinstance(item, int)

 def isOperator(item):

 return isinstance(item, types.FunctionType)

 def expect_something():

 nonlocal qstack

 if qstack == []:

 failed('Stack unexpectedly empty.')

 def top_of_stack():

 nonlocal qstack

 return qstack[-1]

 def expect_nest():

 expect_something()

 if not isNest(top_of_stack()):

 failed('Expected nest on stack.')

 def expect_number():

 expect_something()

 if not isNumber(top_of_stack()):

 failed('Expected number on stack.')

 of 126 160

 def to_stack(item):

 nonlocal qstack # note 5

 qstack.append(item)

 def from_stack():

 nonlocal qstack

 expect_something()

 return qstack.pop()

 def string_from_stack():

 expect_nest()

 result = ''

 for ch in from_stack():

 if ch == 13: # \r

 result += '\n'

 elif 31 < ch < 127:

 result += chr(ch)

 else:

 result += '?'

 return result

 def string_to_stack(str):

 result = []

 for ch in str:

 if ch == '\n':

 result.append(13)

 elif 31 < ord(ch) < 127:

 result.append(ord(ch))

 else:

 result.append(ord('?'))

 to_stack(result)

 def python():

 nonlocal to_stack

 nonlocal from_stack

 nonlocal string_to_stack

 nonlocal string_from_stack

 try:

 exec(string_from_stack())

 except QuackeryError:

 raise

 except Exception as diagnostics:

 failed('Python error: "' + str(diagnostics) + '"')

 def qfail():

 message = string_from_stack()

 failed(message)

 def stack_size():

 nonlocal qstack

 to_stack(len(qstack))

 def qreturn():

 nonlocal rstack

 to_stack(rstack)

 of 127 160

 def dup():

 a = from_stack()

 to_stack(a)

 to_stack(a)

 def drop():

 from_stack()

 def swap():

 a = from_stack()

 b = from_stack()

 to_stack(a)

 to_stack(b)

 def rot():

 a = from_stack()

 swap()

 to_stack(a)

 swap()

 def over():

 a = from_stack()

 dup()

 to_stack(a)

 swap()

 def nest_depth():

 nonlocal rstack

 to_stack(len(rstack)//2)

 def to_return(item):

 nonlocal rstack

 rstack.append(item)

 def from_return():

 nonlocal rstack

 if rstack == []:

 failed('Return stack unexpectedly empty.')

 return rstack.pop()

 true = 1

 false = 0

 def bool_to_stack(qbool):

 to_stack(true if qbool else false) # note 6

 def nand():

 expect_number()

 a = from_stack()

 expect_number()

 bool_to_stack(from_stack() == false or a == false)

 of 128 160

 def equal():

 expect_something()

 a = from_stack()

 expect_something()

 bool_to_stack(a == from_stack())

 def greater():

 expect_number()

 a = from_stack()

 expect_number()

 bool_to_stack(from_stack() > a)

 def inc():

 expect_number()

 to_stack(1 + from_stack())

 def plus():

 expect_number()

 a = from_stack()

 expect_number()

 to_stack(a + from_stack())

 def negate():

 expect_number()

 to_stack(-from_stack())

 def multiply():

 expect_number()

 a = from_stack()

 expect_number()

 to_stack(a * from_stack())

 def qdivmod():

 expect_number()

 a = from_stack()

 if a == 0:

 failed('Division by zero.')

 expect_number()

 results = divmod(from_stack(), a)

 to_stack(results[0])

 to_stack(results[1])

 def exponentiate():

 expect_number()

 a = from_stack()

 if a < 0:

 failed('Tried to raise to a negative power: ' + str(a))

 expect_number()

 to_stack(from_stack() ** a)

 def shift_left():

 expect_number()

 a = from_stack()

 if a < 0:

 failed('Cannot << by a negative number: ' + str(a))

 expect_number()

 to_stack(from_stack() << a)

 of 129 160

 def shift_right():

 expect_number()

 a = from_stack()

 if a < 0:

 failed('Cannot >> by a negative number: ' + str(a))

 expect_number()

 to_stack(from_stack() >> a)

 def bitwise_and():

 expect_number()

 a = from_stack()

 expect_number()

 to_stack(a & from_stack())

 def bitwise_or():

 expect_number()

 a = from_stack()

 expect_number()

 to_stack(a | from_stack())

 def bitwise_xor():

 expect_number()

 a = from_stack()

 expect_number()

 to_stack(a ^ from_stack())

 def bitwise_not():

 expect_number()

 to_stack(~from_stack())

 def qtime():

 to_stack(int(time.time()*1000000))

 def meta_done():

 from_return()

 from_return()

 def meta_again():

 from_return()

 to_return(-1)

 def meta_if():

 expect_number()

 if from_stack() == 0:

 to_return(from_return() + 1)

 def meta_iff():

 expect_number()

 if from_stack() == 0:

 to_return(from_return() + 2)

 def meta_else():

 to_return(from_return() + 1)

 of 130 160

 def meta_literal():

 pc = from_return() + 1

 return_nest = from_return()

 if len(return_nest) == pc:

 failed('''Found a "'" at the end of a nest.''')

 to_stack(return_nest[pc])

 to_return(return_nest)

 to_return(pc)

 def meta_this():

 pc = from_return()

 return_nest = from_return()

 to_stack(return_nest)

 to_return(return_nest)

 to_return(pc)

 def meta_do(): # note 7

 expect_something()

 the_thing = from_stack()

 if not isNest(the_thing):

 the_thing = [the_thing]

 to_return(the_thing)

 to_return(-1)

 def meta_bail_by():

 expect_number()

 a = 2*(from_stack())

 if a <= len(rstack):

 for _ in range(a):

 from_return()

 else:

 failed('Bailed out of Quackery.')

 def qput():

 expect_nest()

 a = from_stack()

 expect_something()

 b = from_stack()

 a.append(b)

 def immovable(): # note 8

 pass

 def take():

 expect_nest()

 a = from_stack()

 if len(a) == 0:

 failed('Unexpectedly empty nest.')

 if len(a) == 1:

 if isNest(a[0]) and len(a[0]) > 0 and a[0][0] == immovable:

 failed('Cannot remove an immovable item.')

 to_stack(a.pop())

 of 131 160

 def create_nest():

 to_stack([])

 def qsplit():

 expect_number()

 a = from_stack()

 expect_nest()

 b = from_stack()

 to_stack(b[:a])

 to_stack(b[a:])

 def join():

 expect_something()

 b = from_stack()

 if not isNest(b):

 b = [b]

 expect_something()

 a = from_stack()

 if not isNest(a):

 a = [a]

 to_stack(a+b)

 def qsize():

 expect_nest()

 to_stack(len(from_stack()))

 def qfind():

 expect_nest()

 nest = from_stack()

 expect_something()

 a = from_stack()

 if a in nest:

 to_stack(nest.index(a))

 else:

 to_stack(len(nest))

 def peek():

 expect_number()

 index = from_stack()

 expect_nest()

 nest = from_stack()

 if index >= len(nest) or (

 index < 0 and len(nest) < abs(index)):

 failed('Cannot peek an item outside a nest.')

 else:

 to_stack(nest[index])

 def poke():

 expect_number()

 index = from_stack()

 expect_nest()

 nest = from_stack().copy()

 expect_something()

 value = from_stack()

 if index >= len(nest) or (

 index < 0 and len(nest) < abs(index)):

 failed('Cannot poke an item outside a nest.')

 else:

 nest[index] = value

 to_stack(nest)

 of 132 160

 def qnest():

 expect_something()

 bool_to_stack(isNest(from_stack()))

 def qnumber():

 expect_something()

 bool_to_stack(isNumber(from_stack()))

 def qoperator():

 expect_something()

 bool_to_stack(isOperator(from_stack()))

 def quid():

 expect_something()

 to_stack(id(from_stack()))

 def qemit():

 expect_number()

 char = from_stack()

 if char == 13:

 sys.stdout.write(‘\n’)

 elif 31 < char < 127:

 sys.stdout.write(chr(char))

 else:

 sys.stdout.write('?')

 def ding():

 sys.stdout.write('\a')

 def qinput():

 prompt = string_from_stack()

 string_to_stack(input(prompt))

 of 133 160

 filepath = [] # note 9

 def putfile():

 nonlocal filepath

 filename = string_from_stack()

 if len(filepath) > 1:

 to_stack(filepath[-1])

 filename = string_from_stack() + filename

 filetext = string_from_stack()

 try:

 with open(filename, 'x'): pass

 except FileExistsError:

 to_stack(false)

 except:

 raise

 else:

 try:

 with open(filename, 'w') as f: f.write(filetext)

 except:

 raise

 else:

 to_stack(true)

 def releasefile():

 nonlocal filepath

 filename = string_from_stack()

 if len(filepath) > 1:

 to_stack(filepath[-1])

 filename = string_from_stack() + filename

 try:

 os.remove(filename)

 except FileNotFoundError:

 to_stack(false)

 except:

 raise

 else:

 to_stack(true)

 def sharefile():

 nonlocal filepath

 dup()

 filename = string_from_stack()

 if len(filepath) > 1:

 to_stack(filepath[-1])

 filename = string_from_stack() + filename

 try:

 with open(filename) as f: filetext = f.read()

 except FileNotFoundError:

 to_stack(false)

 except:

 raise

 else:

 drop()

 string_to_stack(filetext)

 to_stack(true)

 of 134 160

 operators = { # note 10

 'python': python, # ($ -->)

 'fail': qfail, # ($ -->)

 'nand': nand, # (b b --> b)

 '=': equal, # (x x --> b)

 '>': greater, # (n n --> b)

 '1+': inc, # (n --> n)

 '+': plus, # (n n --> n)

 'negate': negate, # (n --> n)

 '*': multiply, # (n n --> n)

 '/mod': qdivmod, # (n n --> n n)

 '**': exponentiate, # (n n --> n)

 '<<': shift_left, # (f n --> f)

 '>>': shift_right, # (f n --> f)

 '&': bitwise_and, # (f f --> f)

 '|': bitwise_or, # (f f --> f)

 '^': bitwise_xor, # (f f --> f)

 '~': bitwise_not, # (f --> f)

 'time': qtime, # (--> n)

 'stacksize': stack_size, # (--> n)

 'nestdepth': nest_depth, # (--> n)

 'return': qreturn, # (--> [)

 'dup': dup, # (x --> x x)

 'drop': drop, # (x -->)

 'swap': swap, # (x x --> x x)

 'rot': rot, # (x x x --> x x x)

 'over': over, # (x x --> x x x)

 ']done[': meta_done, # (-->)

 ']again[': meta_again, # (-->)

 ']if[': meta_if, # (b -->)

 ']iff[': meta_iff, # (b -->)

 ']else[': meta_else, # (-->)

 "]'[": meta_literal, # (--> x)

 ']this[': meta_this, # (--> [)

 ']do[': meta_do, # (x -->)

 ']bailby[': meta_bail_by, # (n -->)

 'put': qput, # (x [-->)

 'immovable': immovable, # (-->)

 'take': take, # ([--> x)

 '[]': create_nest, # (--> n)

 'split': qsplit, # ([n --> [[)

 'join': join, # (x x --> [)

 'find': qfind, # (x --> b)

 'peek': peek, # ([n --> x)

 'poke': poke, # (x [n -->)

 'size': qsize, # ([--> n)

 'nest?': qnest, # (x --> b)

 'number?': qnumber, # (x --> b)

 'operator?': qoperator, # (x --> b)

 'quid': quid, # (x --> n)

 'emit': qemit, # (c -->)

 'ding': ding, # (-->)

 'input': qinput, # ($ --> $)

 'filepath': filepath, # (--> s)

 'putfile': putfile, # ($ --> b)

 'releasefile': releasefile, # ($ --> b)

 'sharefile': sharefile} # ($ --> $ b)

 of 135 160

 qstack = []

 rstack = []

 current_nest = []

 program_counter = 0

 def traverse(the_nest): # note 11

 nonlocal current_nest

 nonlocal program_counter

 nonlocal rstack

 current_nest = the_nest

 program_counter = 0

 while True:

 if program_counter >= len(current_nest):

 if len(rstack) == 0:

 break

 else:

 program_counter = from_return()

 current_nest = from_return()

 program_counter += 1

 continue

 current_item = current_nest[program_counter]

 if isNest(current_item):

 to_return(current_nest)

 to_return(program_counter)

 current_nest = current_item

 program_counter = 0

 elif isOperator(current_item):

 current_item()

 program_counter += 1

 elif isNumber(current_item):

 to_stack(current_item)

 program_counter += 1

 else:

 failed('Quackery was worried by a python.')

 def isinteger(string):

 if len(string) > 0 and string[0] == '-':

 string = string[1:]

 return string.isdigit()

 of 136 160

 def next_char(): # note 12

 nonlocal source

 if len(source) > 0:

 char = source[0]

 source = source[1:]

 return char

 else:

 return ''

 def next_word():

 result = ''

 while True:

 char = next_char()

 if char == '':

 return result

 if ord(char) < 33:

 if result == '':

 continue

 return result

 result += char

 def one_char():

 while True:

 char = next_char()

 if char == '':

 return char

 if ord(char) < 33:

 continue

 return char

 def get_name():

 name = next_word()

 if name == '':

 raise EOFError('Unexpected end of program text.')

 return name

 def check_build():

 nonlocal current_build

 if len(current_build) == 0:

 raise IndexError('Nothing to name.'))

 def qis():

 nonlocal operators

 nonlocal current_build

 check_build()

 name = get_name()

 operators[name] = current_build.pop()

 def qcomment():

 word = ''

 while word != ')':

 word = next_word()

 if word == '':

 raise EOFError('Unclosed comment.')

 def endcomment():

 raise SyntaxError('Too many end of comments.')

 def unresolved():

 raise TypeError('Unresolved forward reference.')

 of 137 160

 def forward():

 nonlocal current_build

 current_build.append([unresolved])

 def resolves():

 nonlocal current_build

 name = get_name()

 if name in operators:

 if operators[name][0] != unresolved:

 raise TypeError(name + ' is not a forward reference.')

 check_build()

 operators[name][0] = current_build.pop()

 else:

 raise NameError('Unrecognised word: ' + name)

 def char_literal():

 nonlocal current_build

 char = one_char()

 if char == '':

 raise SyntaxError('No character found.')

 current_build.append(ord(char))

 def string_literal():

 nonlocal current_build

 delimiter = ''

 result = []

 while delimiter == '':

 char = next_char()

 if char == '':

 raise EOFError('No string found.')

 if ord(char) > 32:

 delimiter = char

 char = ''

 while char != delimiter:

 char = next_char()

 if char == '':

 raise EOFError('Endless string discovered.')

 if char != delimiter:

 result.append(ord(char))

 current_build.append([[meta_literal], result])

 def ishex(string):

 if len(string) > 1 and string[0] == '-':

 string = string[1:]

 return all(char in '0123456789ABCDEFabcdef' for char in string)

 def hexnum():

 nonlocal current_build

 word = get_name()

 if not ishex(word):

 raise SyntaxError(word + " is not hexadecimal.")

 current_build.append(int(word, 16))

 of 138 160

 builders = {'is': qis, # note 13

 '(': qcomment,

 ')': endcomment,

 'forward': forward,

 'resolves': resolves,

 'char': char_literal,

 '$': string_literal,

 'hex': hexnum}

 current_build = []

 source = ''

 the_nest = []

 def build(source_string):

 nonlocal source

 nonlocal the_nest

 source = source_string

 nesting = 0

 def sub_build(): # note 14

 nonlocal nesting

 nonlocal current_build

 the_nest = []

 while True:

 current_build = the_nest

 word = next_word()

 if word == '':

 return the_nest

 elif word == '[':

 nesting += 1

 the_nest.append(sub_build())

 elif word == ']':

 nesting -= 1

 if nesting < 0:

 raise SyntaxError('Unexpected end of nest.')

 return the_nest

 elif word in builders:

 builders[word]()

 elif word in operators:

 the_nest.append(operators[word])

 elif isinteger(word):

 the_nest.append(int(word, 10))

 else:

 raise NameError('Unrecognised word: ' + word)

 the_nest = sub_build()

 if nesting > 0:

 raise SyntaxError('Unfinished nest.')

 return the_nest

 of 139 160

 predefined = r""" (note 15)

 [0] is false (--> b)

 [1] is true (--> b)

 [dup nand] is not (b --> b)

 [nand not] is and (b b --> b)

 [not swap not nand] is or (b b --> b)

 [= not] is != (x x --> b)

 [not swap not !=] is xor (b b --> b)

 [swap >] is < (n n --> b)

 [negate +] is - (n --> n)

 [/mod drop] is / (n n --> n)

 [swap drop] is nip (x x --> x)

 [/mod nip] is mod (n n --> n)

 [1 swap <<] is bit (n --> n)

 [swap over] is tuck (x x --> x x x)

 [rot rot] is unrot (x x x --> x x x)

 [rot tuck >

 unrot > not and] is within (n n n --> b)

 [over over] is 2dup (x x --> x x x x)

 [drop drop] is 2drop (x x -->)

 []again[] is again (-->)

 []done[] is done (-->)

 []if[] is if (b -->)

 []iff[] is iff (b -->)

 []else[] is else (-->)

 [2dup > if swap drop] is min (n n n --> n)

 [2dup < if swap drop] is max (n n n --> n)

 [rot min max] is clamp (n n n --> n)

 [dup nest? iff [] join] is copy ([--> [)

 []'[] is ' (--> x)

 []this[] is this (--> [)

 of 140 160

 []do[] is do (x -->)

 []this[do] is recurse (-->)

 [not if]again[] is until (b -->)

 [not if]done[] is while (b -->)

 [immovable]this[]done[] is stack (--> s)

 [dup take dup rot put] is share (s --> x)

 [take drop] is release (s -->)

 [dup release put] is replace (x s -->)

 [dup take rot + swap put] is tally (n s -->)

 [swap take swap put] is move (s s -->)

 [[] tuck put] is nested (x --> [)

 [stack []] is protected (--> s)

 [protected take

]'[nested join

 protected put] is protect (-->)

 ' stack ' filepath put

 protect filepath

 [stack] is dip.hold (--> s)

 protect dip.hold

 [dip.hold put

]'[do dip.hold take] is dip (x --> x)

 [rot dip rot] is 2swap (x x x x --> x x x x)

 [dip [dip 2dup] 2swap] is 2over (x x x x --> x x x x x x)

 [stack] is depth (--> s)

 protect depth

 [depth share

 0 != while

 -1 depth tally

]this[do

 1 depth tally] is decurse (-->)

 [dup 0 < if negate] is abs (n --> n)

 [stack] is times.start (--> s)

 protect times.start

 [stack] is times.count (--> s)

 protect times.count

 [stack] is times.action (--> s)

 protect times.action

 of 141 160

 []'[times.action put

 dup times.start put

 [1 - dup -1 > while

 times.count put

 times.action share do

 times.count take again]

 drop

 times.action release

 times.start release] is times (n -->)

 [times.count share] is i (--> n)

 [times.start share i 1+ -] is i^ (--> n)

 [0 times.count replace] is conclude (-->)

 [times.start share

 times.count replace] is refresh (-->)

 [times.count take 1+

 swap - times.count put] is step (--> s)

 [stack] is temp (--> s)

 protect temp

 [immovable

 dup -1 > +

]this[swap peek

]done[] is table (n --> x)

 [[] unrot (note 16)

 dup 1 < iff 2drop done

 [2 /mod over while

 if [dip [tuck join swap]]

 dip [dup join]

 again] 2drop join] is of (x n --> [)

 [split 1 split

 swap dip join

 0 peek] is pluck ([n --> [x)

 [split

 rot nested

 swap join join] is stuff (x [n --> [)

 [0 pluck] is behead ([--> [x)

 [over size over size

 dup temp put

 swap - 1+ times

 [2dup over size split

 drop = if

 [i^ temp replace

 conclude]

 behead drop]

 2drop temp take] is findseq ([[--> n)

 of 142 160

 [13] is carriage (--> c)

 [carriage emit] is cr (-->)

 [32] is space (--> c)

 [space emit] is sp (-->)

 [dup char a char { within

 if [32 -]] is upper (c --> c)

 [dup char A char [within

 if [32 +]] is lower (c --> c)

 [dup 10 <

 iff 48 else 55 +] is digit (n --> c)

 [stack 10] is base (--> s)

 protect base

 [10 base put] is decimal (-->)

 [$ '' over abs

 [base share /mod digit

 rot join swap

 dup 0 = until]

 drop

 swap 0 < if

 [$ '-' swap join]] is number$ (n --> $)

 [stack] is with.hold (--> s)

 protect with.hold

 [nested

 ' [dup with.hold put

 size times]

 ' [with.hold share

 i ~ peek]

 rot join

 nested join

 ' [with.hold release]

 join] is makewith (x --> [)

 []'[makewith do] is witheach ([-->)

 [witheach emit] is echo$ ($ -->)

 [stack] is mi.tidyup (--> s)

 protect mi.tidyup

 [stack] is mi.result (--> s)

 protect mi.result

 of 143 160

 [mi.tidyup put

 over size mi.result put

 nested

 ' [if

 [i^ mi.result replace

 conclude]]

 join makewith do

 mi.tidyup take do

 mi.result take] is matchitem ([x x --> n)

 []'[]'[matchitem] is findwith ([--> n)

 [size <] is found (n [--> b)

 [space >] is printable (c --> b)

 [dup findwith

 printable []

 split nip] is trim ($ --> $)

 [dup findwith

 [printable not] []

 split swap] is nextword ($ --> $ $)

 [dup nest? if

 [dup size 2 < if done

 dup size 2 / split

 recurse swap

 recurse join]] is reverse (x --> x)

 [[] swap times

 [swap nested join]

 reverse] is pack (* n --> [)

 [witheach []] is unpack ([--> *)

 [stack] is to-do (--> s)

 protect to-do

 [' done swap put] is new-do (s -->)

 [dip [1+ pack] put] is add-to (* x n s -->)

 [[dup take

 unpack do again] drop] is now-do (s -->)

 [1 split reverse join

 now-do] is do-now (s -->)

 [[dup take ' done = until]

 drop] is not-do (s -->)

 of 144 160

 [stack] is sort.test (--> s)

 protect sort.test

 []'[sort.test put

 [] swap witheach

 [swap 2dup findwith

 [over sort.test share

 do] []

 nip stuff]

 sort.test release] is sortwith ([--> [)

 [sortwith >] is sort ([--> [)

 [32 127 clamp 32 -

 [table

 0 86 88 93 94 90 92 87 63 64 75 73 82 74 81 76

 1 2 3 4 5 6 7 8 9 10 83 84 69 72 70 85

 91 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

 41 43 45 47 49 51 53 55 57 59 61 65 78 66 77 80

 89 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

 42 44 46 48 50 52 54 56 58 60 62 67 79 68 71 0]

] is qacsfot (c --> n)

 [[dup $ '' = iff false done

 over $ '' = iff true done

 behead rot behead rot

 2dup = iff [2drop swap] again

 qacsfot swap qacsfot >]

 unrot 2drop] is $< ($ $ --> b)

 [swap $<] is $> ($ $ --> b)

 [sortwith $>] is sort$ ([--> [)

 [upper 47 - 0 44 clamp

 [table

 -1 0 1 2 3 4 5 6 7 8 9 -1 -1 -1 -1

 -1 -1 -1 10 11 12 13 14 15 16 17 18 19 20 21

 22 23 24 25 26 27 28 29 30 31 32 33 34 35 -1]

 dup 0 base share

 within not if [drop -1]] is char->n (c --> n)

 [dup $ '' = iff [drop 0 false] done

 dup 0 peek char - =

 tuck if [behead drop]

 dup $ '' = iff [2drop 0 false] done

 true 0 rot witheach

 [char->n

 dup 0 < iff [drop nip false swap]

 else [swap base share * +]]

 rot if negate

 swap] is $->n ($ --> n b)

 of 145 160

 (adapted from 'A small noncryptographic PRNG' by Bob Jenkins)

 (https://burtleburtle.net/bob/rand/smallprng.html)

 [hex FFFFFFFFFFFFFFFF] is 64bitmask (--> f)

 [64bitmask &] is 64bits (f --> f)

 [dip 64bits 2dup << 64bits

 unrot 64 swap - >> |] is rot64 (f n --> f)

 [stack 0] is prng.a (--> s)

 [stack 0] is prng.b (--> s)

 [stack 0] is prng.c (--> s)

 [stack 0] is prng.d (--> s)

 [prng.a share

 prng.b share tuck

 7 rot64 - 64bits swap

 prng.c share tuck

 13 rot64 ^ prng.a replace

 prng.d share tuck

 37 rot64 + 64bits prng.b replace

 over + 64bits prng.c replace

 prng.a share + 64bits

 dup prng.d replace] is prng (--> n)

 [hex F1EA5EAD prng.a replace

 dup prng.b replace

 dup prng.c replace

 prng.d replace

 20 times [prng drop]] is initrandom (n -->)

 hex DEFACEABADFACADE initrandom

 [time initrandom] is randomise (-->)

 [64bitmask 1+

 over / over *

 [prng 2dup > not while

 drop again]

 nip swap mod] is random (n --> n)

 [[] swap dup size times

 [dup size random pluck

 nested rot join swap]

 drop] is shuffle ([--> [)

 of 146 160

 [stack] is history (--> s)

 [protected share history put

 protected share 0

 [over size over

 > while

 2dup peek

 size unrot

 1+ again]

 2drop

 protected share size pack

 history put

 pack dup history put unpack

 stacksize history put

 nestdepth history put

 false history put] is backup (n -->)

 [history release

 nestdepth

 history take

 -]bailby[

 true history put] is bail (-->)

 [history take iff

 [stacksize

 history take

 history share

 size - - times drop

 history take unpack

 history take unpack

 history share size

 [dup 0 > while

 1 -

 history share

 over peek

 rot over size

 swap -

 [dup 0 > while

 over release

 1 - again]

 2drop again]

 drop

 history take

 protected replace

 true]

 else

 [5 times

 [history release]

 false]] is bailed (--> b)

 of 147 160

 [quid swap quid =] is oats (x x --> b)

 [[] swap

 [trim

 dup size while

 nextword nested

 swap dip join again]

 drop] is nest$ ($ --> [)

 [stack] is namenest (--> s)

 [namenest share] is names (--> [)

 [names find names found] is name? ($ --> b)

 forward is actions (n --> x)

 [' actions] is actiontable (--> x)

 [actiontable share tuck

 findwith [over oats] drop

 swap found] is named? (x --> b)

 forward is reflect (x --> x)

 [dup nest? if

 [dup [] = if done

 dup size 1 = iff

 [0 peek

 dup named? iff

 nested done

 reflect nested]

 done

 dup size 2 / split

 recurse swap

 recurse join]] resolves reflect (x --> x)

 [stack] is buildernest (--> s)

 [buildernest share] is builders (--> s)

 [builders find

 builders found] is builder? ($ --> b)

 forward is jobs (n --> x)

 [' jobs] is jobtable (--> [)

 [stack] is message (--> s)

 [stack] is b.nesting (--> s)

 protect b.nesting

 [stack] is b.to-do (--> s)

 [$ '[' b.nesting put

 [] swap] is b.[([$ --> [[$)

 of 148 160

 [b.nesting take dup

 $ '' = if

 [$ 'Unexpected "]".'

 message put

 bail]

 dup $ '[' = iff drop

 else

 [$ 'Nest mismatch: '

 swap join $ ']' join

 message put

 bail]

 dip [nested join]] is b.] ([[$ --> [$)

 [over [] = if

 [$ '"is" before it to name.'

 message put

 bail]

 dup $ '' = if

 [$ '"is" needs a name after it.'

 message put

 bail]

 nextword nested

 namenest take

 join

 namenest put

 dip

 [-1 pluck

 actiontable take

 1 stuff

 actiontable put]] is b.is ([$ --> [$)

 [over [] = if

 [$ '"builds" needs something to name before it.'

 message put

 bail]

 dup $ '' = if

 [$ '"builds" needs a name after it.'

 message put

 bail]

 nextword nested

 buildernest take

 join

 buildernest put

 dip

 [-1 pluck

 jobtable take

 1 stuff

 jobtable put]] is b.builds ([$ --> [$)

 [trim nextword

 dup $ '' = if

 [$ 'Unfinished comment.'

 message put

 bail]

 $ ')' = until] is b.(([$ --> $ [)

 [$ 'Unexpected ")".'

 message put

 bail] is b.) ([$ --> $ [)

 of 149 160

 [$ 'Unresolved reference.'

 fail] is unresolved (-->)

 [dip

 [' [unresolved]

 copy nested join]] is b.forward ([$ --> [$)

 [over [] = if

 [$ '"resolves" needs something to resolve.'

 message put

 bail]

 dup $ '' = if

 [$ '"resolves" needs a name to resolve into.'

 message put

 bail]

 dip [-1 split]

 nextword dup temp put

 names find

 dup names found not if

 [$ 'Unknown word after "resolves": '

 temp take join

 message put

 bail]

 actions

 dup ' [unresolved] = not if

 [char " temp take join

 $ '" is not an unresolved forward reference.'

 join

 message put

 bail]

 rot 0 peek over

 replace

 ' unresolved swap

 ' replace 2 b.to-do add-to

 temp release] is b.resolves ([$ --> [$)

 [1 split

 over $ '' = if

 [$ '"char" needs a character after it.'

 message put

 bail]

 dip join] is b.char ([$ --> [$)

 [dup $ '' = if

 [$ '"$" needs to be followed by a string.'

 message put

 bail]

 behead over find

 2dup swap found not if

 [$ 'Endless string discovered.'

 message put

 bail]

 split behead drop

 ' ' nested

 rot nested join

 nested swap dip join] is b.$ ([$ --> [$)

 of 150 160

 [dup $ '' = if

 [$ '"say" needs to be followed by a string.'

 message put

 bail]

 $ '$' builders find jobs do

 dip

 [-1 pluck

 ' echo$ nested join

 nested join]] is b.say ([$ --> [$)

 [16 base put

 nextword dup

 $ '' = if

 [$ '"hex" needs a number after it.'

 message put

 bail]

 dup $->n iff

 [nip swap dip join]

 else

 [drop

 char " swap join

 $ '" is not hexadecimal.'

 join message put

 bail]

 base release] is b.hex ([$ --> [$)

 [dip [-1 split] swap do] is b.now! ([$ --> [$)

 [over [] = if

 [$ '"constant" needs something before it.'

 message put

 bail]

 dip

 [-1 pluck do

 dup number? not if

 [' ' nested swap

 nested join

 nested]

 join]] is b.constant ([$ --> [$)

 [' [namenest actiontable

 buildernest jobtable]

 witheach

 [do share copy

 history put]] is backupwords (-->)

 [' [jobtable buildernest

 actiontable namenest]

 witheach

 [do dup release

 history swap move]] is restorewords (-->)

 [4 times

 [history release]] is releasewords (-->)

 of 151 160

 [backupwords

 b.to-do new-do

 1 backup

 [$ '' b.nesting put

 decimal

 [] swap

 [trim

 dup $ '' = iff drop done

 nextword

 dup builders find

 dup builders found iff

 [dip [drop trim]

 jobs do] again

 drop

 dup names find

 dup names found iff

 [actions nested

 nip swap dip join] again

 drop

 dup $->n iff

 [nip swap dip join] again

 drop

 $ 'Unknown word: '

 swap join message put

 bail]

 base release

 b.nesting take dup

 $ '' = iff drop

 else

 [$ 'Unfinished nest: '

 swap join message put

 bail]]

 bailed iff

 [drop b.to-do now-do

 restorewords

 ' ' nested

 message take nested join

 ' echo$ nested join]

 else

 [b.to-do not-do

 releasewords]] is build ($ --> [)

 [build do] is quackery ($ -->)

 of 152 160

 [stack -1] is nesting (--> [)

 forward is unbuild (x --> $)

 [nesting share

 0 = iff [drop $ '...'] done

 $ '' swap

 dup number? iff

 [number$ join] done

 actiontable share

 behead drop

 [dup [] = iff

 [drop false] done

 behead

 rot tuck oats iff

 [drop size 2 +

 actiontable share

 size swap -

 names swap peek join

 true] done

 swap again]

 if done

 dup nest? iff

 [$ '[' rot join swap

 [dup [] = iff drop done

 behead

 -1 nesting tally

 unbuild

 1 nesting tally

 space join

 swap dip join again]

 $ ']' join]

 else

 [drop

 $ "Quackery was worried by a python."

 fail]] resolves unbuild (x --> $)

 [unbuild echo$] is echo (x -->)

 of 153 160

 [$ ''

 return -2 split drop

 witheach

 [dup number? iff

 [number$ join

 $ '} ' join]

 else

 [$ '{' swap dip join

 actiontable share

 findwith

 [over oats] drop

 dup actiontable share

 found iff

 [1 - names swap

 peek join

 space join]

 else

 [drop $ '[...] '

 join]]]

 -1 split drop] is return$ (--> $)

 [return$ echo$] is echoreturn (-->)

 [stacksize dup 0 = iff

 [$ 'Stack empty.' echo$ drop]

 else

 [$ 'Stack: ' echo$

 pack dup

 witheach [echo sp]

 unpack]

 cr] is echostack (-->)

 [cr $ '' $ '/O> '

 [input

 dup $ '' != while

 carriage join join

 $ '... ' again]

 drop

 quackery

 5 nesting put

 cr echostack

 nesting release again] is shell (-->)

 [cr randomise 12 random

 [table

 $ 'Goodbye.' $ 'Adieu.' $ 'So long.'

 $ 'Cheerio.' $ 'Aloha.' $ 'Ciao.'

 $ 'Farewell.' $ 'Be seeing you.'

 $ 'Sayonara.' $ 'Auf wiedersehen.'

 $ 'Toodles.' $ 'Hasta la vista.']

 do echo$ cr cr

 3]bailby[] is leave (-->)

 of 154 160

 [stacksize times drop] is empty (all -->)

 [tuck temp put

 witheach

 [dup size

 rot + dup

 temp share > iff

 [cr drop dup size]

 else sp 1+ swap echo$]

 drop temp release] is wrap$ ([n -->)

 [names reverse 70 wrap$ cr

 builders reverse

 70 wrap$ cr] is words (-->)

 [dup name? iff drop

 else

 [dup sharefile not if

 [$ |$ 'file not found: "|

 swap join

 $ |"' echo$| join]

 nip quackery]] is loadfile ($ -->)

 [dup sharefile iff

 [swap releasefile]

 else [drop false]] is takefile ($ --> $ b)

 [dup releasefile iff

 putfile

 else [2drop false]] is replacefile ($ $ --> b)

 [nested ' [']

 swap join

 decimal unbuild

 base release] is quackify (x --> $)

 (note 17)

 $ "quackify replacefile takefile loadfile words empty wrap$ leave

 shell echostack echoreturn return$ echo unbuild nesting quackery

 build releasewords restorewords backupwords unresolved b.to-do

 b.nesting message jobtable jobs builder? builders buildernest

 reflect named? actiontable actions name? names namenest nest$ oats

 bailed bail backup history shuffle random randomise initrandom

 prng prng.d prng.c prng.b prng.a rot64 64bits 64bitmask $->n

 char->n sort$ $> $< qacsfot sort sortwith sort.test not-do do-now

 now-do add-to new-do to-do unpack pack reverse nextword trim

 printable found findwith matchitem mi.result mi.tidyup echo$

 witheach makewith with.hold number$ decimal base digit lower upper

 sp space cr carriage findseq behead stuff pluck of table temp step

 refresh conclude i^ i times times.action times.count times.start

 abs decurse depth 2over 2swap dip dip.hold protect protected

 nested move tally replace release share stack while until recurse

 do this ' copy clamp max min else iff if done again 2drop 2dup

 within unrot tuck bit mod nip / - < xor != or and not true false

 sharefile releasefile putfile filepath input ding emit quid

 operator? number? nest? size poke peek find join split [] take

 immovable put]bailby[]do[]this[]'[]else[]iff[]if[]again[

]done[over rot swap drop dup return nestdepth stacksize time ~ ^

 | & >> << ** /mod * negate + 1+ > = nand fail python"

 nest$ namenest put 

 of 155 160

 [table

 quackify replacefile takefile loadfile words empty wrap$ leave

 shell echostack echoreturn return$ echo unbuild nesting quackery

 build releasewords restorewords backupwords unresolved b.to-do

 b.nesting message jobtable jobs builder? builders buildernest

 reflect named? actiontable actions name? names namenest nest$ oats

 bailed bail backup history shuffle random randomise initrandom

 prng prng.d prng.c prng.b prng.a rot64 64bits 64bitmask $->n

 char->n sort$ $> $< qacsfot sort sortwith sort.test not-do do-now

 now-do add-to new-do to-do unpack pack reverse nextword trim

 printable found findwith matchitem mi.result mi.tidyup echo$

 witheach makewith with.hold number$ decimal base digit lower upper

 sp space cr carriage findseq behead stuff pluck of table temp step

 refresh conclude i^ i times times.action times.count times.start

 abs decurse depth 2over 2swap dip dip.hold protect protected

 nested move tally replace release share stack while until recurse

 do this ' copy clamp max min else iff if done again 2drop 2dup

 within unrot tuck bit mod nip / - < xor != or and not true false

 sharefile releasefile putfile filepath input ding emit quid

 operator? number? nest? size poke peek find join split [] take

 immovable put]bailby[]do[]this[]'[]else[]iff[]if[]again[

]done[over rot swap drop dup return nestdepth stacksize time ~ ^

 | & >> << ** /mod * negate + 1+ > = nand fail python]

 resolves actions (n --> x)

 $ "constant now! hex say $ char resolves forward) (builds is] ["

 nest$ buildernest put

 [table

 b.constant b.now! b.hex b.say b.$ b.char b.resolves

 b.forward b.) b.(b.builds b.is b.] b.[]

 resolves jobs (n --> x)

 """

 traverse(build(predefined)) # note 18

 while(True):

 to_stack([ord(char) for char in source_string])

 try:

 traverse(build('quackery'))

 except QuackeryError as diagnostics:

 if __name__ == '__main__' and len(sys.argv) == 1:

 print(diagnostics)

 continue

 else:

 raise

 except Exception as diagnostics:

 print('Quackery system damage detected.')

 print('Python error: ' + str(diagnostics))

 sys.exit()

 else:

 traverse(build('stacksize pack decimal unbuild'))

 result = ''

 for ch in (qstack[0][2:-2]):

 result += chr(ch)

 return result

 of 156 160

if __name__ == '__main__': # note 19

 if len(sys.argv) > 1:

 filename = sys.argv[1]

 try:

 f = open(filename)

 filetext = f.read()

 f.close()

 except FileNotFoundError:

 print('File not found: "' + filename + '"')

 else:

 try:

 print(quackery(filetext))

 print()

 except QuackeryError as diagnostics:

 print('\nQuackery crashed.\n')

 print(diagnostics)

 print()

 except Exception as diagnostics:

 print('Quackery system damage detected.')

 print('Python error: ' + str(diagnostics))

 sys.exit()

 else:

 print('\nWelcome to Quackery.')

 print('\nEnter "leave" to leave the shell.')

 quackscript = r"""

 $ 'extensions.qky' dup name? not

 dip sharefile and iff

 [cr say 'Building extensions.' cr quackery]

 else drop

 shell """

 try:

 quackery(quackscript)

 except QuackeryError as diagnostics

 print('\nQuackery crashed.\n')

 print(diagnostics)

 print()

 of 157 160

Under the Quackery Bonnet

A few notes about the code. Mostly things that were not immediately obvious about Python, as I was
new to the language when I started coding, and took longer than they needed to for me to figure out,
and a couple of things that I feel the need to mention about the coding style and Quackery code.

1. ^ This gives the shell a handy way of accessing previously entered text via the up and down arrows.
It is not supported by Python for Windows, hence the try. 

2. ^ When a virtual processor problem arises, Quackery generates a QuackeryError and passes
diagnostic information back to Python. The simplest way to format the diagnostics is with a short
Quackery program, compiled with the Python Quackery compiler build(), and run using the
Virtual Processor, traverse(). During development these tools were not available, so the
Quackery Stack and Return Stack were printed as Python lists. 
 
Using Quackery code relies on large portions of the Quackery dictionary being viable after the
crash, so there are circumstances where this will not work. This is addressed in the Python script at
the end of the file, which deals with the possibility of an exception being raised while handling an
exception, leading to infinite recursion, for each of the various ways that Quackery can be used (as
a function inside a Python program, in the terminal using the Quackery shell, or with a filename
passed to it as an argument in the terminal shell.) 

3. ^ “str(thestack)[2:-2]” If you’re not familiar with Python, this colon syntax is called “slice
notation”. It’s difficult to search online for information about syntax based functionality when you
don’t have the right word for it. 

4. ^ There are a lot of very short functions. The Python code is more “Quackery style” than
“Pythonic” – this is a side effect of thinking Quackery while coding Python. Hopefully, this makes
the code more readable for you, not less. 

5. ^ “nonlocal” – Variables are not declared in Python. If Python encounters a word it has not seen
before, it will assume that it is a local variable unless it has been told otherwise. Hence it has the
declarations global (not used in this code) and nonlocal, which tells it that, in this instance, the
variable qstack is local to the function quackery(), of which to_stack() is a subfunction. 

6. ^ “x if y then z” is Python’s ternary operator. Evaluate y. If y returns True, evaluate x and
return the value x returns, otherwise evaluate z and return the value z returns.  

7. ^ Quackery’s method of treating a function as data is with ' and do, so if you have defined a word
xyz, ' xyz do is equivalent to xyz. Python handles this by ripping the brackets off a function and
sticking them on a variable. 
 
So if you have defined a function xyz(), and abc is a variable, then  
abc = xyz 
abc() 
is equivalent to xyz() 

8. ^ How to define a no-op in Python. 

9. ^ filepath is going to be an ancillary stack but uniquely amongst the ancillary stacks it needs to
be accessed by some of the operators, specifically sharefile, releasefile and putfile, so it
needs to be named in Python. Later, in the Quackery code, we will turn it into an ancillary stack,
soon after the word stack is defined. 

 of 158 160

10. ^ “operators” is a slight misnomer for this dictionary. This page of the code does provide a
handy summary of the Quackery operators, prior to defining the virtual processor, traverse(),
on the next page, but the Python Quackery compiler that follows will use it as a dictionary of all
the predefined Quackery words, not just the operators. 

11. ^ The Quackery virtual processor is a classic depth first binary tree traversal. It differs in that
Python lists are arrays, not linked lists, so traversing the right branch consists of incrementing the
variable program_counter, and in that rather than being a recursive function the return stack is
explicit and needs to be managed. This allows the meta control flow operators to modify the return
stack.  
 
The actions of pushing a number onto the stack, jumping to a subroutine and returning from a
subroutine are implied by the presence of a number, the presence of a nest, and the end of the
array respectively. This simplifies the compiler and allows us to easily construct nests under
program control generally, but requires that we explicitly test for numbers, nests and operators in
the virtual processor. 

12. ^ The Python Quackery compiler differs in several ways from the Quackery Quackery compiler.
This is the first – it nibbles away at the source string one character at a time, whereas the Quackery
Quackery compiler bites off one word at a time. Some of the differences are because different
languages lend themselves to different approaches, other differences are because when I wrote the
Quackery Quackery compiler I had the experience of having written a Quackery compiler before.  
 
The Python Quackery compiler works fine in its task of compiling the predefined portion of
Quackery written in Quackery and does not need fixing, so I did not retrospectively modify the
Python Quackery compiler in light of what I had learned implementing the Quackery Quackery
compiler. 

13. ^ The Python Quackery builders dictionary is exclusively for the use of the Python Quackery
compiler, and provides the minimal functionality required to compile the string of predefined
Quackery words that follows the compiler in the source code. builds is not present as the Python
Quackery compiler uses is to aggregate all the definitions into the Python operators dictionary.
Words destined for the Quackery builders & jobs dictionary are named with b. at the start of the
name to differentiate them from their counterparts in the Python Quackery builders dictionary.  
 
The compiler directives [and] are not present in the Python builders dictionary as the Python
Quackery compiler treats them as a special case. This is down to the order in which the compiler
was developed. I wanted to be able to create nests before I put the put the compiler directives
mechanism in place, and because it allows the compiler to be defined simply, as a recursive
function. 

14. ^ Strictly speaking, sub_build() is the Python Quackery compiler. build() is just a harness to
make it easier to check for balanced nesting. 

15. ^ The r in r """ stands for “raw” – it allows us to include backslashes in a string without Python
treating them as a special character. Strings defined with r """ cannot have the sequence of
characters """ inside them.

16. ^ The definition of of may seem unnecessarily convoluted when  
 
 [[] swap times [over join] nip] is of (x n —> [)  
 
would work just fine. The convoluted method is more efficient when creating very large nests. It is
a variation on Russian peasant multiplication.  
https://en.wikipedia.org/wiki/Ancient_Egyptian_multiplication#Russian_peasant_multiplication 

 of 159 160

https://en.wikipedia.org/wiki/Ancient_Egyptian_multiplication#Russian_peasant_multiplication

17. ^ Having added all the definitions of the predefined portion of Quackery to the Python operators
dictionary, we populate the Quackery names & actions and builders & jobs dictionaries from it. 

18. ^ Finally, after all the preamble, here is the definition of the Python function quackery() 

1. Build the Quackery dictionaries by compiling the predefined string with the Python
Quackery compiler and then traversing the resulting nest. 

2. Load the Python string passed to quackery() as a parameter onto the Quackery stack as a
Quackery string.  

3. Compile and run the string “quackery”, which compiles the string on the nest using the
Quackery Quackery compiler (build) and traverses it with “do”. 

4. Return the Quackery stack as a Python string as the result of evaluating the Python
function quackery(). 
 
The rest of the definition addresses what to do if an exception is raised.  
 
if __name__ == '__main__' and len(sys.argv) == 1: treats the Quackery shell as
a special case; when Quackery crashes in the shell with a Quackeryerror, it is restarted. 

19. ^ The last page is run if Quackery is run from the terminal, rather than the function quackery()
being invoked from a Pythonscript.

My sincere thanks to Alex (olus2000 on GitHub), dragoncoder047 on Github, and Mike (tankf33der on
Github) for various bug fixes, typos and improvements to Quackery.

 of 160 160

	Expectation Management
	Mac OS Users
	Raspberry Pi OS and other Linux Users
	Windows Users
	All Users
	Quackery and the Keyboard
	1. The Quackery Stack
	2. More Stacks
	3. The Other Stack
	Virtual Hardware Problems
	Stack Problems
	Return Stack Problems
	Arithmetic Problems
	Nest Problems
	Python Problems
	Compilation Problems
	System Damage Problems
	Pseudo-Virtual Hardware Problems
	Python Extensions
	Quackery Libraries
	The Vulgar Arithmetic Library
	Notes.
	Gnome Sort
	Heap Sort
	Finite Automata String Search
	Conclusion.
	Words
	Numbers
	Nests
	p68 Stack Management Words
	p70 Arithmetic Words
	p71 Comparison Words
	p75 Boolean Logic Words
	p76 Bitwise Logic Words
	p79 Pseudorandom Number Words
	p80 Ancillary Stack Words
	p82 Control Flow Words
	p89 Character and String Words
	p92 Nest Editing Words
	p96 Searching and Sorting Words
	p99 User Input and Output Words
	p101 File Management Words
	p102 Exception Handling Words
	p105 To-do Stack Words
	p106 Internal Representation Words
	p108 Dictionary Words
	p110 Building Words
	p119 Time Words
	p120 Development Tool Words
	Stack Management
	Arithmetic
	Comparison
	Boolean Logic
	Bitwise Logic
	Pseudorandom Numbers
	Ancillary Stacks
	Control Flow
	Structured Control Flow
	Meta Control Flow
	Deferment
	Recursion
	Iteration
	Characters and Strings
	Nest Editing
	Searching and Sorting
	User Input and Output
	File Management
	Exception Handling
	To-do Stack
	Internal Representation
	Dictionary
	Building
	Time
	Development Tools

