
Sommaire

1 Vocabulary
2 Simulators

2.1 Ressources sharing
2.1.1 File formats

2.1.1.1 Input file
2.1.1.2 Generic configuration file
2.1.1.3 Configuration file

2.2 SystemC simulator
3 Wireworld Computer Reverse Engineering

3.1 Methodology
3.2 Clock system

3.2.1 Clock injector
3.2.2 Clock divider
3.2.3 Implemented feature

3.3 Digit display
3.3.1 7 segments display
3.3.2 ROM
3.3.3 ROM model
3.3.4 Contrôleur de ROM
3.3.5 Operating
3.3.6 ROM controller model

3.4 Data latch
3.4.1 Inputs/Outputs
3.4.2 Internal architecture
3.4.3 Operating

3.5 Binary/BCD converter
3.5.1 Inputs/Outputs
3.5.2 Internal architecture

3.5.2.1 Binary adder
3.5.2.2 Digit selecter

3.5.2.2.1 Inputs/Outputs
3.5.2.2.2 Internal architecture
3.5.2.2.3 Operating

3.5.2.3 Overflow detection loop and pulse generator
3.5.2.4 Pulse controller
3.5.2.5 Mega loops

3.5.3 Operating
3.5.3.1 Principle

Wireworld Project
De Wiki LOGre
< Projet Wireworld

Language: Français • English

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

1 of 44 30/03/17 20:57

3.5.3.2 Arithmetic
3.5.3.3 Simulation

3.6 Registers access controller
3.6.1 Inputs/Outputs
3.6.2 Internal architecture

3.6.2.1 Burst generator of n electrons in 6 microns
3.6.2.2 Electron doubler in 6 microns
3.6.2.3 Delay generator in 6 microns

3.6.3 Operating principle
3.7 Control Unit

3.7.1 Operating principle
3.7.2 Implementation

3.7.2.1 Inputs/Outputs
3.7.2.2 Internal architecture
3.7.2.3 Operating

3.7.2.3.1 PC/Data register selecter
3.7.2.3.2 PC incrementer

3.8 Registers
3.8.1 Register write

3.8.1.1 Operating principle
3.8.1.2 Implementation

3.8.2 Register read
3.8.2.1 Operating principle
3.8.2.2 Implementation

3.8.3 Special registers
3.8.3.1 Adder register
3.8.3.2 Conditional register

3.8.3.2.1 Internal architecture
3.8.3.2.2 Operating

3.8.4 Register configuration
4 Wireworld computer

4.1 Functional model
4.1.1 Inputs/Outputs
4.1.2 Assembly format

4.2 Use
5 Conclusions

Wireworld (https://en.wikipedia.org/wiki/Wireworld) is a Cellular automaton
(https://en.wikipedia.org/wiki/Cellular_automaton) with few simples rules but
that is Turing-complete (https://en.wikipedia.org/wiki/Turing-complete) and
that allow to simulate electornic logic elements. You can find more details on
its Wireworld wikipedia page (https://en.wikipedia.org/wiki/Wireworld)

Vocabulary
Generation : iteration number of automaton. First generation is
generation 0.
Period : in case of repetitive thing period define the number of generation

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

2 of 44 30/03/17 20:57

needed to come back in the same stategenerations necessaires pour
revenir au meme etat
n microns technology : n is the period between 2 electrons in an
electron burst

Simulators
I wrote my own simulators for Wireworld automaton :

A version whose simulator core is C++ based : Repo (https://github.com
/quicky2000/P_wireworld/tree/master/sources/wireworld)
A version whose simulator core is [1] (https://en.wikipedia.org
/wiki/SystemC) based : Repo (https://github.com/quicky2000/P_wireworld
/tree/master/sources/wireworld_systemc)

I use additional libraries like lib SDL 1.2 (https://www.libsdl.org/) for graphical
display and xmlParser (http://www.applied-mathematics.net/tools
/xmlParser.html) for XML file parsing

Ressources sharing

Everything that is independant from simulator's core is located in a common
package (https://github.com/quicky2000/wireworld_common/) containing:

Parser used to read automaton description
Analyser which compute design partition and neigborhood to determine
parts that will be simulated
Generic configuration XML parser that allow design parametrisation
Configuration parser which define design parameters

File formats

Input file

Automaton is described in a text file where each cell is represented by a
character:

. : empty cell
: copper cell
E : electron head cell
Q : electron tail cell

By example :

..#.......#.#.....................................

..#.......#.#.....................................

..#........##.....................................

..#.........#.....................................

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

3 of 44 30/03/17 20:57

...#################..###.......###.......###.....#.###.......###.....#.###.....#.###.......###.......###.......###...

..E.................###.##.##.###.##.##.###.##.##.###.##.##.###.##.##.###.##.##.###.##.##.###.##.##.###.##.##.###.##.#

...Q################..#.#.#..#..#.#.#..#..#.#.#..#..#.#.#..#..#.#.#..#..#.#.#..#..#.#.#..#..#.#.#..#..#.#.#..#..#.#.#.

......................###.#.###.###.#.###.###.#.###.###.#.###.###.#.###.###.#.###.###.#.###.###.#.###.###.#.###.###.#.

.......................#..#..#...#..#..#...#..#..#...#..#..#...#..#..#...#..#..#...#..#..#...#..#..#...#..#..#...#..#.

.......................#.#.#.#...#.#.#.#...#.#.#.#...#.#.#.#...#.#.#.#...#.#.#.#...#.#.#.#...#.#.#.#...#.#.#.#...#.#.#

.......................#.#.#.#...#.#.#.#...#.#.#.#...#.#.#.#...#.#.#.#...#.#.#.#...#.#.#.#...#.#.#.#...#.#.#.#...#.#.#

........................#..#.#....#..#.#....#..#.#....#..#.#....#..#.#....#..#.#....#..#.#....#..#.#....#..#.#....#..#

..........................#..#......#..#......#..#......#..#......#..#......#..#......#..#......#..#......#..#......#.

..........................#..#......#..#......#..#......#..#......#..#......#..#......#..#......#..#......#..#......#.

..........................#..#......#..#......#..#......#..#......#..#......#..#......#..#......#..#......#..#......#.

...........................##........##........##........##........##........##........##........##........##........#

Generic configuration file

The file format is XML and it defines items associated to cell coordinates that
will be electron head or tail.
Coordinates defined in items are relative to coordinates defined at the
beginning of file.
When an item is configured then associated cells will be electron head or tail,
else it initial state will be the one defined in input file

<?xml version="1.0" encoding="UTF-8"?>
<generic_definition version ="1.0">
<origin coord="178,182"/>
<item_list>
<item name="init_pulse_1" e_head="-8,11"/>
<item name="init_pulse_2" e_tail="-15,11"/>
<item name="shift_1" e_head="-167,13" e_tail="-168,13"/>
<item name="shift_2" e_head="-173,13" e_tail="-174,12"/>

</item_list>
</generic_definition>

Configuration file

It complete the generic configuration file by defining if items are active or not.
File format is basic : item_name:[0|1]
Here is an example :

Test file
init_pulse_1:1
init_pulse_2:1
shift_1:0
shift_2:1
#EOF

SystemC simulator

Each automaton's cell is represented by a SystemC module containing

An input boolean port for clock signal
An array of input boolean port whose size depends on neighbor number
A boolean output port indicating if cell is in electron head state

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

4 of 44 30/03/17 20:57

SystemC module contains a SystemC process sensitive on clock that will do the
following depending on cell's interal state:

Count number of boolean inputs whose value is 1
Update cell's internal state
Update boolean output depending on cell's internal state

Output of neighbor cells are bound to cell's inputs.
In order to improve performances, SystemC module is templated on number of
neighbor cells and the correct module type is instanciated by analyzer
depending on neighbor number.

Wireworld Computer Reverse
Engineering
Wireworld computer (http://www.quinapalus.com/wi-index.html) is a design
based on wireworld cellular automaton. It defines an URISC
(https://en.wikipedia.org/wiki/One_instruction_set_computer#urisc) processor
with TTA (https://en.wikipedia.org/wiki/Transport_triggered_architecture)
architecture containing 64 registers of 16 bits
This design has been realised between 1990 and 1992 by David Moore, Mark
Owen and some other people and can be considered as a precursor of what
some people do today with Minecraft and its Redstone extension
A Turing Machine based on Game of life had been designed several years
before Wireworld Computer but is programming was far les suser friendly
compared to the one of wireworld computer
When a discovered this design and saw it simulated I was immediately
fascinated. The web site explain its global operating but major part of the
design is not explain in details so I was interested in understanding the
following points:

how the design operate
how complexity emerge from very few simple rules
how authors succeeeded to overcome difficulties raised by this automaton:
propagation constraints, spatial constraints due to 2D universe etc

Before reading the following it is interesting to read the few pages of
wireworld computer website (http://www.quinapalus.com/wi-index.html) to
understand general operating principles of Wireworld computer

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

5 of 44 30/03/17 20:57

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

6 of 44 30/03/17 20:57

Methodology

I use my C++ simulator to run the design in performance mode
I use my SystemC simulator to run the desing in debug mode :

Evolution of automaton cell states is recorded in VCD format
(https://en.wikipedia.org/wiki/Value_change_dump)
I use GTKwave (http://gtkwave.sourceforge.net/) to open them

For some part of the design I use Logisim (http://www.cburch.com
/logisim/) to simulate them as logic gates. It allows to have a more
'understandable' view

Clock system

A simple way to generate a period P clocks is to draw a loop with size P
containing a single electron.
This approach works well for small values of P but become space exepensive
with huge values.
The clock system address this issue with a compact and elegant design that
allow to geerate clocks with large periods in a size-contained space

It
is

composed of

A clock injector
A chain of clock dividers

Clock injector

This is a simple loop with inject an electron in clock dividers chain with a
period of 36
In the remaining part of Wireworld Computer reverse engineering the leftmost
copper cell will be considered as time origin and coordinates origin for the
other cells

Clock divider

It allows to divide clock frequency by 2.
It is composed of 2 logic gates (XOR and A & /B), a loop and a delay path.
The loop is used as electron generator and has period of 12.

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

7 of 44 30/03/17 20:57

36 being a multiple of 12 and the loop being powered by clock injector, when
the loop will be full an electron will arrive on the XOR gate at the same time
than an electron coming from clock injector
An electron spend 4 generations to go from cell common to loop and delay path
to A input of gate A & /B
An electron spend 16 générations to go from cell common to loop and delay
path to B input of gate A & /B
It means the delay is 12 générations which is the period of the loop so nth
electron will arrive on A & /B gate at the same time than electron (n - 1)th.
Only the first electron will arrive alone on the gate and will succeed to go
ahead
In schematic below loop period and delay path are modelledf by a D flip-flop.

At startup loop is empty. The first arriving electron will fill it. Thanks to
delay introduced by the delay path the first electron go through gate A
&/B but not the following electron.
The next electron that will arrive on XOR gate will empty the loop but will
not reach the output due to the lock of A& /B gate

By this way only one electron of two reach the output of clock divider

Implemented feature

Clock injector period being 36 and each clock divider dividing clock frequency
by 2 (ie multiplying period by 2) the clock system allow to generate in a
compact design several clock frequencies.
it is composed of 10 clock dividers and has outputs after 5h and 6h division
unit which allows to have respective output frenquencies :

After clock divider 5 : 36 * 2^5 = 36 * 32 = 1152
After clock divider 6 : 36 * 2^6 = 36 * 64 = 1152 *2 = 2304

Digit display

Display of numbers in Wireworld Computer is realised by 5 digits displays
Each digit display is composed of :

1 7 segments display

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

8 of 44 30/03/17 20:57

1 ROM with 10 inputs and 7 outputd
1 ROM controller

7 segments display

It consist of wireworld cells assembled to represent a 7
segments display
Each segment is supplied by a wire that is distributed
between several wires
Wires filled with electrons represent enlighted segments.
To maximise the "shine" of a wire electrons must be very
closed eacg other wich consist of using 3 micron Afin de
maximiser la "brillance" d un fil il faut que les électrons
soient très rapprochés, c est a dire utiliser la technologie 3
microns technonlogy which is the thinnest allowed by
Wireworld The other parts of digit display are designed in 6
microns technology so each input of 7 segments display has
a frequency doubler:

Each incoming electron (period 6) is duplicated and delay of 3
generations before being reintroduced in an OR gate which generates 2
electronds with period 3

ROM

It codes the correspondancy between a digit and its represention on 7
segments display
Its operating is not the same than standard ROM. Indeed in a standard rom
inputs biary code the address of the ROM that has to be read.
In this case each correspond to a single address so there are as much address
as inputs which means that only one input should be active at a time : input n
code for digit n.

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

9 of 44 30/03/17 20:57

For one electron coming on a ROM input, one
electron will be generated on each ouput of the
ROM coding 1.
To maintain segments lighted the ROM input
correspoding to the digit must be continuously
supplied.
This feature is implemented by ROM controller

ROM model

For this component electron propagation time is not
meaningfull functionnally so they are not modelled.
The ROM is partially modelled: only digits 0 to 6 are
managed

In a first time circuit is empty, an electron is supplied to light the zero
At each cycle the active column/input will be shifted to light up next digit

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

10 of 44 30/03/17 20:57

Contrôleur de ROM

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

11 of 44 30/03/17 20:57

Its role is to continuously supply ROM
and to select whcih ROM input will be
supplied with electrons

Each ROM input is bound to a 6 period
loop going through an OR gate, to
introduce an electron in the loop, and
an A & /B gate, to empty the loop.
Each input loops are bound in the
following way :

A wire going out from loop n-1 go
into A input of A & /B gate,
controlling loop transfer, while
output of this gate is bound to
input of OR gate responsible of
electon introduction in loop n
A wire going out from loop n + 1 go into B input of A & /B gate
controlling the loop n clean

By this way in case loop n is supplied and B input of n to n+1 transfer gate is
supplied than n remain active.
In case input B is no more supplied than electron of loop n will be duplicated in
loop n+1 which will clean loop n.
Thanks to this mechanism there is only one loop active at at time so there is
only one ROM input active at a time.

B inputs of transfer gates are all bound on the same wire itself bound on on a A
& /B gate output whose A input is driven by an electron generator of period 6.
By controling B input it is possible to stop the supply of transfer gates.
A loop transfer needs 10 generations to be performed so for each electron
locked the active input of ROM is shifted by one.

Remark:

To make the ROM controller work properly the electron stored in the loop
need to arrive on transfer gate input at the same time than electron
produced by electorn generator
There is a 10th loop that allow to clean the 9th loop
The logic gate OR controllinh the electron introduction in loop 0 is
supplied by a wire going through a "tailer", a logic gate of type n & !(n+1)
for 6 microns technology, which means that if n electrons arrive only ce
qui signifie qui si l on envoie n electrons, only the n-1eme will go through
the gate.

Operating

In case 10 electrons are sent on this wire and on loop transfer control
wire then then 10 loops bound on ROM inputd are clean and one electron
is introduced in loop 0 meaning that 0 wil be displayd on 7 segments

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

12 of 44 30/03/17 20:57

display.
If we want to
display 5 and
the displayed
digit is zerp
then it is needed
to send 5
electrons on
loop transfer
control wire to
activate loop 5

ROM controller
model

In this example D
flip-flop are there
only to model
electrons'
propagation delay
Only loop 0 to 3 and
clean loop have been
modelled
To keep a reasonable
model's size I use a
standard ROM where only addresse having only one bit at 1 are used

In a first time circuit is empty, an electron is introduced to display 0
After few cycles 3 electrons are sent on B input to display 3
After few cycles a burst of electron is sent to clean loops and reset display

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

13 of 44 30/03/17 20:57

Data latch

This module control :

When data coming from register 0 is tkane in account and sent to
binary/BCD converter
Reset of digit display

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

14 of 44 30/03/17 20:57

Inputs/Outputs

Tt has 3 inputs:

Data coming from register 0 (picture bottom left)
Write command indicating that a new value has been written in register 0
(picture bottom right)
Set command to indicate that data should be loaded in adder of
binary/BCD converter (picture top right)

The Set command is sent by bottom megaloop of binary/BCD converter

It has 2 outputs:

Digit display reset that will make all 7 segments displays display zero (
picture top left)
Data to load in adder of binary/BCD converter (picture top center)

Internal architecture

It is made up of :

3 microns clock
always active (C1) + 1
transistor (Tf)
6 microns clock with
set and reset (C2)
6 microns clock de 6
microns always active
(C3)
3 transistors
(T1,T2,T3)
3 XOR gates to
implement a wire
crossing
1 path that can
contain 16 electrons in
6-microns
1 "header" for 6
microns burst that
allow only first
electron to go through

Operating

Bottom megaloop of
Binary/BCD converter,
bound to Set input of Data
Latch, contains an electron that is the Set command and a list of aritmetic
values in 6 microns.

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

15 of 44 30/03/17 20:57

These values should not generate Set command so they must be filtered
Filetering is done by the 3 microns clock C1 which drives a transistor Tf
controlling if electron coming from Megaloop continue in Data latch or not.
Arithmetic values of megaloop are coded in 6 microns and are in phase which
C1 meaning that each electron of arithmetic value reach transistor Tf input at
the time electron generated by clock C1 disable transistor Tf so megaloop
electrons don't go throught transistor
Command electron is slightly out of phase compared to clock C1 which allows
it to go trough Tf and to generate Set command.

Set command trigger the introduction of an electron inside the loop of clock
C2 that will generate burt of electron flow with a 6 microns period.
The Write command empty this loop.
This command is made up of 16 electrons in 6 microns but only the first one
has an effect, indeed the following electrons will empty an already empty loop.
The electron flow generated by C2 clock go along 2 different wires :

A wire going to transistor T1 input and then on control input of
transistor T2
A central wire that can contain 16 electrons in 6 microns and that go into
control input of transistor T1

The central wire cross the Data input wire thanks to 3 XOR gates and supply
too a header that will only let the first electron go to Reset output controlling
digit display reset

When central wire is full than its electrons disable T1 transistor so electrons
coming from clock C2 cannot pass.
These electrons disable T2 transistor which prevents electrons coming from
clock C3 to reach transistor T3 control input
Transistor T3 control transfer from Data input to Data output

During normal operating:
C2 clock is active and central wire is full
T1 transistor is disabled so electrons from C2 cannot reach control
input of T2 transistor
T2 transistor is enabled so electrons from C3 reach control input of
transistor T3
T3 transistor is disable so Data input cannot go to Data output.

When Write command arrive:
Loop of clock C2 become empty. There are no more electrons sent to
central wire
Central wire become empty
T1 become enable but C2 loop is empty so no electron go through T1
so T2 remains enabled
Transistor T3 remains disabled so Data input cannot go to Data
output.

When Set command arrive:
An electron is introduced C2 loop which restart to generate electrons

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

16 of 44 30/03/17 20:57

every 6 microns
Central wire is filling
Until central wire is full T1 remains enabled so the first 16 1er
electrons coming from C2 reach T2 control input
T2 is disabled by par 16 consecutive electrons so 16 electrons from
C3 clock doesn't reach control input of T3
T3 is enabled and let the 16 electrons go from Data input to Data
output

Once central path is full operating come back to normal mode

Remark :In order Data Latch work properly the following timing constraints
must been respected:

Write command should be synchronised with C2 loop to empty it
Set command should arrive with the good timing so that Data 16
electrons arrive on T3 input when it is enabled

Binary/BCD converter

Kind reminder, BCD (https://en.wikipedia.org/wiki/Binary-coded_decimal) is a
way to code decimal representation of binary numbers using 4 bits to represent
each digit
By example, BCD representation of 125 is 0001 0010 0101.

The Binary/BCD converter is one of the most complex part of Wireworld
Computer, which is reflexed by the number of cells and the area it represents
in the full design.

Inputs/Outputs

Binary/BCD converters has 1 input and 5 outputs
Its input receive binary data coded on 16 bits LSB first The 5 outputs are :

a pair of wire for each digit display

Internal architecture

Binary/BCD converter is composed of several parts:

Binary adder
Digit selecter
Overflow detection loop associated to a pulse generator
Pulse controler for digit display
2 mega loops

Binary adder

This is a standard serial binary adder whose output is bound on one of its

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

17 of 44 30/03/17 20:57

input.
Loop
period is
193

générations which allow him to operate on numbers coded on 32 bits in 6
microns.

Digit selecter

Inputs/Outputs

It has 2 inputs:

reset input driven by Digit display reset output coming from Data
Latch
Digit change input driven by pulse controler for digit display
Data input which receive pulses send by pulse generator and destinated
to digit displays

and 5 outputs:

One output, made up a pair of wire, per digit display

Internal architecture

The way its control part operates is very similar to the way displays's controler
is working

It is made up of a series of 5 electron generation loops with a set and a
reset that are bound each other

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

18 of 44 30/03/17 20:57

Digit_display[n] is driven by loop[n], Digit_display[0] control unit digit
loop[n+1] drive reset of loop[n] so that if loop[n+1] is active then
reset command of loop boucle[n] is intercepted
Every set are driven by the Digit change input

The loop outputs are bound on transistors controlling replication of B input of
double A AND NOT gates to their A input
These logic gates have 2 outputs S1 and S2 respectively bound to control
input of digit display and to B input of next gate. The outputs implement the
following equations:

S1 = /A && B
S2 = B && /A

gate[0] has its B input bound to pulse generator output while gates[n]
have their B input boudn to S2 output of gate[n-1]
By this way when loop[n] is active it locks transistor[n] so gate[n] has its A
input at 0 so S2 = B making electrons coming from pulse generator go to
gate[n+1]
On the other hand when loop[n] is empty then transistor[n] is enable so
electron coming from pulse generator is replicated on B input.
Due to propagation delay A went down to 0 making S1 change to 1 so electron
is send to digit display

Operating

By default all loops are active
When Data Latch send its reset it makes loop[4] empty

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

19 of 44 30/03/17 20:57

When pulse controller send a digit change command then as loop
correspondig to active digit display[n] is empty then reset of loop[n-1] is
not intercepted so loop[n-1] while loop[n] is refilled
When loop[0] is reactivated then other loops are active too so we come
back to default state

Overflow detection loop and pulse generator

The period of
this loop is
193, it stores
one electron
and is
synchronised
with the binary
adder loop
The electron
control
activation of
set and reset of a period 6 loop (gen loop) in pulse generator:

If there is no overflow in binary adder then reset is done just after set no
pulse is generated
If there is an overflow in adder than transistor is disabled which inhibit
reset so pulses are generated by period 6 loop

Due to the length of the overflow detection loop the pulse generator produce
32 electrons pulses before loop 6 period reset is performed by detection loop

Pulse controller

It has 1 input:

It receives
pulses sent by
pulse generator

and 2 outputs :

Pulse output
that will send
only pulses
needed to
display the
correct digit
Digit change
that will emit an
electro to
indicate to digit
selector that it

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

20 of 44 30/03/17 20:57

should select an other digit

Pulse controller is mainly made up of a loop with period 769 which allow it to
store 4 values coded on 32 bits in 6 microns
Values stored in pulse controller loop:

Index Hexadecimal
value Binary value Number of bits

with value 0

0 0x7FFFFFFF
0111 1111 1111 1111 1111
1111 1111 1111

1

1 0x77777777
0111 0111 0111 0111 0111
0111 0111 0111

8

2 0x7F7F7F7F
0111 1111 0111 1111 0111
1111 0111 1111

4

3 0x7FFF7FFF
0111 1111 1111 1111 0111
1111 1111 1111

2

In addition to these values pulse controller loop contain an out-of-phase
electron
On the top-left part of pulse controller there is a transistor Tn driven by a clock
C3 of période 3 microns which filters electrons coding values in the loop and
prevent them to be sent on output wire driving digit change
On the other hand out-of-phase electron is not filtered and is able to go on
output wire which allow to indicate to digit selecter to select an other digit
To work properply the pulse controler need to be well synchronised with pulse
generator so that generated pulses for the current digit go through digit
selecter before digit change command
Values stored in the loop are synchronised in such a way that they control Tc
located at bottom-right wihich allow to control if pulses sent by pulse
generator reach the output or not

If value bit is 1 then Tc is locked and electron sent by pulse generator
does not reach output.
If value bit is 0 then Tc is unlocked and electron sent by pulse generator
reach output.

Mega loops

Mega loops are huge size circular buffers containing some numeric values.
Their period is 3841 générations which allow them to store 640 bits which
represents 20 values coded on 32 bits in 6 microns
Compared to electron move direction in the loop values are stored LSB first

Values stored in megaloop:

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

21 of 44 30/03/17 20:57

Index Top Megaloop Bottom Megaloop

0 0xFFFFFF80 0xFFFF63C0

1 0x0 0x4E20

2 0x0 0x2710

3 0x1890 0x7D0

4 0x0 0xFA0

5 0x0 0x7D0

6 0x0 0x3E8

7 0x3E8 0xC8

8 0x0 0x190

9 0x0 0xC8

10 0x0 0x64

11 0x44 0x14

12 0x0 0x28

13 0x0 0x14

14 0x0 0xA

15 0xA 0x2

16 0x0 0x4

17 0x0 0x2

18 0x0 0x1

19 0x1 0x1

Bottom megaloop contains too an out-of-phase electron compared to values
electrons.
This is this particular electron that will not be filtered by transistor Tf of data
latch and that will be the Set command
Electrons coding values are in phase with Tf lock and will be filtered

Operating

Principle

Base principle of Binary/BCD converter is overflow detection
The value to be displayed will be added with a series of predefined values
stored in bottom megaloop which generate or not some overflows
When an overflow is detected then pulse generator is activated and generates
pulses composed of 32 electrons
These electrons go on input of a transistor drivent by pulse controller
Depending on current value of pulse controler at this time only 1,2,4 ou 8
electrons will succeed to pass through the transistor and reach data input of
digit selecter that will route them to the correct digit display

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

22 of 44 30/03/17 20:57

To display a digit d you need to decompose it in a sum of 1, 2 4, 8 which is
equivalent to code it in binary
As we are in base ten to display a number n with need to decompose it in a sum
of (1, 2 4, 8) * 10 exponent(digit_position)

Remark : The 32 electrons burst generated in case of overflow is re-injected in
adder carry to disable it. Values contained in top megaloop are computed in a
way that prevent carry to propagate between 2 decimal digits that's why we
can remark that megaloop values are not null for indexes corresponding to
stronger bit of each digit coded in BCD

Arithmetic

Operations performed in Binary/BCD converter are done on 32 bits,
consequently the maximum representable value is 0xFFFFFFFF
If first bottom megaloop value is substracted to this maximum value the result
is the following :

0xFFFFFFFF - 0xFFFF63C0 = 39999

meaning that every number >= 40000 added to 0xFFFF63C0 will generate an
overflow. By repeating this process on other values of bottom megaloop we
obtain the following array :

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

23 of 44 30/03/17 20:57

Index Previous
value

Current
value

V[n-1] +
V[n]

Substraction
from Vmax

Overflow
limit

0 0xFFFF63C0 0x4E20 0xFFFFB1E0
0xFFFFFFFF –
0xFFFFB1E0

19999

1 0xFFFFB1E0 0x2710 0xFFFFD8F0
0xFFFFFFFF –
0xFFFFD8F0

9999

2 0xFFFFD8F0 0x7D0 0xFFFFE0C0
0xFFFFFFFF –
0xFFFFE0C0

7999

3 0xFFFFE0C0 0xFA0 0xFFFFF060
0xFFFFFFFF –
0xFFFFF060

3999

4 0xFFFFF060 0x7D0 0xFFFFF830
0xFFFFFFFF –
0xFFFFF830

1999

5 0xFFFFF830 0x3E8 0xFFFFFC18
0xFFFFFFFF –
0xFFFFFC18

999

6 0xFFFFFC18 0xC8 0xFFFFFCE0
0xFFFFFFFF –
0xFFFFFCE0

799

7 0xFFFFFCE0 0x190 0xFFFFFE70
0xFFFFFFFF –
0xFFFFFE70

399

8 0xFFFFFE70 0xC8 0xFFFFFF38
0xFFFFFFFF –
0xFFFFFF38

199

9 0xFFFFFF38 0x64 0xFFFFFF9C
0xFFFFFFFF –
0xFFFFFF9C

99

10 0xFFFFFF9C 0x14 0xFFFFFFB0
0xFFFFFFFF –
0xFFFFFFB0

79

11 0xFFFFFFB0 0x28 0xFFFFFFD8
0xFFFFFFFF -
0xFFFFFFD8

39

12 0xFFFFFFD8 0x14 0xFFFFFFEC
0xFFFFFFFF –
0xFFFFFFEC

19

13 0xFFFFFFEC 0xA 0xFFFFFFF6
0xFFFFFFFF –
0xFFFFFFF6

9

14 0xFFFFFFF6 0x2 0xFFFFFFF8
0xFFFFFFFF –
0xFFFFFFF8

7

15 0xFFFFFFF8 0x4 0xFFFFFFFC
0xFFFFFFFF –
0xFFFFFFFC

3

16 0xFFFFFFFC 0x2 0xFFFFFFFE
0xFFFFFFFF –
0xFFFFFFFE

1

17 0xFFFFFFFE 0x1 0xFFFFFFFF

18 0xFFFFFFFF 0x1 0

It is obvious that overflow limits correspond to code with 1,2,4,8 and 10 powers

Simulation

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

24 of 44 30/03/17 20:57

C++ code below implement arithmetic principle of Binary/BCD converter and
display internal states to illustate its operating

#include <iostream>
#include <stdint.h>
#include <stdlib.h>
#include <iomanip>

using namespace std;

int main(int argc, char ** argv)
{
if(argc != 2)
{
cout << "Usage is binary2bcd <number>" << endl ;
exit(-1);

}
uint64_t l_number = strtoll(argv[1],NULL,0);
cout << "Input number is " << l_number << endl ;

uint32_t l_bottom_loop[] = {
0xFFFF63C0,
0x4E20,
0x2710,
0x7D0,
0xFA0,
0x7D0,
0x3E8,
0xC8,
0x190,
0xC8,
0x64,
0x14,
0x28,
0x14,
0xA,
0x2,
0x4,
0x2,
0x1,
0x1

};

uint32_t l_top_loop[] = {
0xFFFFFF80,
0x0,
0x0,
0x1890,
0x0,
0x0,
0x0,
0x3E8,
0x0,
0x0,
0x0,
0x44,
0x0,
0x0,
0x0,
0xA,
0x0,
0x0,
0x0,
0x1,

};

uint64_t l_adder_content = l_number;
uint64_t l_adder_full = 0xFFFFFFFF;
uint32_t l_display[5] = {0,0,0,0,0};
uint32_t l_display_index = 0;
uint32_t l_power_index = 2;

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

25 of 44 30/03/17 20:57

uint32_t l_carry = 0;

//std::cout << "carry : 0x" << setw(8) << setfill('0') << hex << l_carry << dec << endl ;
for(uint32_t l_index = 0; l_index < 20 ; ++l_index)
{
if(((l_index + 1) % 4) == 0)
{
 std::cout << "---";
 std::cout << "---";
 std::cout << "---";
 std::cout << "--" << std::endl ;
}

 std::cout << "Step[" << setfill(' ') << setw(2) << l_index << "]: ";
cout << "carry : 0x" << setw(8) << setfill('0') << hex << l_carry << dec << " & ~(" ;
cout << "Top_loop[" << setfill(' ') << setw(2) << l_index << "] : 0x" << setw(8) << setfill('0'

 l_carry = l_carry & (~ (l_top_loop[l_index]));
cout << "Adjusted carry 0x" << setw(8) << setfill('0') << hex << l_carry << dec << " ^ " ;
cout << "Bot_loop[" << setfill(' ') << setw(2) << l_index << "] : 0x" << setw(8) << setfill('0'
uint32_t l_to_add = l_carry ^ l_bottom_loop[l_index];
cout << "To add 0x" << setw(8) << setfill('0') << hex << l_to_add <<dec << " + " ;
cout << "Adder content : " << setw(8) << setfill('0') << hex << l_adder_content << dec << " | "

 l_adder_content += l_to_add;
cout << "==> Adder content : " << setw(8) << setfill('0') << hex << l_adder_content << dec ;
if(l_adder_content > l_adder_full)
{
 cout << "\tOverflow !" ;
 l_adder_content = (l_adder_content & 0xFFFFFFFF) + 1;
 l_carry = 0xFFFFFFFF;

 // Part implemented by Pulse controler
 l_display[l_display_index]+= 1 << l_power_index;
}

else
{
 l_carry = 0;
}

// Part implemented by Pulse controler
 l_power_index = (l_power_index > 0 ? l_power_index - 1 : 3);

// Part implemented by Pulse controler and Digit display controler
if(l_power_index == 3)
{
 ++l_display_index;
}

cout << endl;
}

// Display Results
for(uint32_t l_index = 0 ; l_index < 5; ++l_index)
{
cout << "|" << l_display[l_index] ;

}
cout << "|" << endl ;

}

To compile it use the following command

g++ -Wall -ansi -pedantic -g -std=c++11 -D__STDC_FORMAT_MACROS -D__STDC_LIMIT_MACROS -D__STDC_CONSTANT_MACROS binary2b

Here is an execution example:

$./binary2bcd.exe 0x100
Input number is 256
Step[0]: carry : 0x00000000 & ~(Top_loop[0] : 0xffffff80) => Adjusted carry 0x00000000 ^ Bot_loop[0] : 0xffff63c0 =
Step[1]: carry : 0x00000000 & ~(Top_loop[1] : 0x00000000) => Adjusted carry 0x00000000 ^ Bot_loop[1] : 0x00004e20 =
Step[2]: carry : 0x00000000 & ~(Top_loop[2] : 0x00000000) => Adjusted carry 0x00000000 ^ Bot_loop[2] : 0x00002710 =
--
Step[3]: carry : 0x00000000 & ~(Top_loop[3] : 0x00001890) => Adjusted carry 0x00000000 ^ Bot_loop[3] : 0x000007d0 =

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

26 of 44 30/03/17 20:57

Step[4]: carry : 0x00000000 & ~(Top_loop[4] : 0x00000000) => Adjusted carry 0x00000000 ^ Bot_loop[4] : 0x00000fa0 =
Step[5]: carry : 0x00000000 & ~(Top_loop[5] : 0x00000000) => Adjusted carry 0x00000000 ^ Bot_loop[5] : 0x000007d0 =
Step[6]: carry : 0x00000000 & ~(Top_loop[6] : 0x00000000) => Adjusted carry 0x00000000 ^ Bot_loop[6] : 0x000003e8 =
--
Step[7]: carry : 0x00000000 & ~(Top_loop[7] : 0x000003e8) => Adjusted carry 0x00000000 ^ Bot_loop[7] : 0x000000c8 =
Step[8]: carry : 0x00000000 & ~(Top_loop[8] : 0x00000000) => Adjusted carry 0x00000000 ^ Bot_loop[8] : 0x00000190 =
Step[9]: carry : 0x00000000 & ~(Top_loop[9] : 0x00000000) => Adjusted carry 0x00000000 ^ Bot_loop[9] : 0x000000c8 =
Step[10]: carry : 0xffffffff & ~(Top_loop[10] : 0x00000000) => Adjusted carry 0xffffffff ^ Bot_loop[10] : 0x00000064 =
--
Step[11]: carry : 0x00000000 & ~(Top_loop[11] : 0x00000044) => Adjusted carry 0x00000000 ^ Bot_loop[11] : 0x00000014 =
Step[12]: carry : 0x00000000 & ~(Top_loop[12] : 0x00000000) => Adjusted carry 0x00000000 ^ Bot_loop[12] : 0x00000028 =
Step[13]: carry : 0xffffffff & ~(Top_loop[13] : 0x00000000) => Adjusted carry 0xffffffff ^ Bot_loop[13] : 0x00000014 =
Step[14]: carry : 0x00000000 & ~(Top_loop[14] : 0x00000000) => Adjusted carry 0x00000000 ^ Bot_loop[14] : 0x0000000a =
--
Step[15]: carry : 0xffffffff & ~(Top_loop[15] : 0x0000000a) => Adjusted carry 0xfffffff5 ^ Bot_loop[15] : 0x00000002 =
Step[16]: carry : 0x00000000 & ~(Top_loop[16] : 0x00000000) => Adjusted carry 0x00000000 ^ Bot_loop[16] : 0x00000004 =
Step[17]: carry : 0xffffffff & ~(Top_loop[17] : 0x00000000) => Adjusted carry 0xffffffff ^ Bot_loop[17] : 0x00000002 =
Step[18]: carry : 0xffffffff & ~(Top_loop[18] : 0x00000000) => Adjusted carry 0xffffffff ^ Bot_loop[18] : 0x00000001 =
--
Step[19]: carry : 0x00000000 & ~(Top_loop[19] : 0x00000001) => Adjusted carry 0x00000000 ^ Bot_loop[19] : 0x00000001 =
|0|0|2|5|6|

The Overflow represent bits with 1 value in BCD code with first bit being the
MSB

Registers access controller

Wireworld Computer
contains 64 registers
16 bits width,
registers access
controllers allow to
select register to
write in or to read
from
There is a write
access controller and
a read access
controller
Register selection is
done by sending two
burst of 16 electrons in 6 microns, one burst going in direction of register bank
top and one going in direction of register bank bottom.
Register located at point where the tow burst will met up become reachable.
The falling burst is emitted with a fix period whereas the rising burst is emitted
with a controllable delay
Controlling this delay allow to control the location where the 2 bursts will met
up and consequently the accessed register.
The register access controller generate the rising burst with a delay depending
on Id of registers that needed to be accessed.

Inputs/Outputs

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

27 of 44 30/03/17 20:57

Register access
controllers have 2
inputs and 2 outputs.
The 2 inputs are the
following:

Access
command that
will activate
controller
Data containing
Id of register we
want to access
to

The outputs are the
following:

Burst of 16
electrons in 6 microns generated with a fixed delay after access command
Burst of 16 electrons in 6 microns generated with a variable delay after
access command depending on register Id

Internal architecture

Each access controller is made up of the following elements:

2 burst generators of 16 electrons 6 microns : GSup and GSdown'
1 burst generator of 8 electrons 6 microns
1 electron doubler in 6 microns
2 delay generators in 6 microns
1 header that let pass only first electron of a burst

Burst generator of n electrons in 6 microns

They receive an electron as
input and generate
electron burst as output.
Operating principle is
always the same :

An electron activate a
loop whose period is 6
microns
Electrons generated
by the loop go to the
output and a feedback
wire that control the
reste of the period 6 loop.

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

28 of 44 30/03/17 20:57

The length of feedback wire determine how many electrons will be emitted
before the first one make the loop empty.

Electron doubler in 6 microns

Electron coming at input is sent on 2 wires going on a OR gate
One wire is longer by 6 micron compared to the other which make that the
output will receive one electron + one electron 6 generation later

Described using algorithm we obtain the following code for n=8:

// this code start to be executed at activation
bool B = true;
bool Bc[8]
do
{
for(int I = 0 ; i < 8 ; ++i)
{
bool output_bit = B ^ Bc[I];
if(Bc[I] == true)
{

 B = false;
}

 B[I] = output_bit
}

} while(!B)
// Send electron to output

If we apply this code to a numeric value like 0011011 (LSB first) so 108

Index 0 1 2 3 4 5 6

Bc[Index] in input 0 0 1 1 0 1 1

B value 1 1 1 0 0 0 0

Bc[Index] in output 1 1 0 1 0 1 1

So an output value of 107 what was expected

Delay generator in 6 microns

They are chacterized by their period. Generated delay will be a multiple of
their périod which is itself a multiple of 6 microns.
n is the factor (périod / 6)
In input they receive:

a value V coded on n bits
a burst of n electrons considered as a value Vbis with n bits at 1

They generate the following outputs :

a reference electron at time t
an electron at time t` so thaht t` = t + constant + V * periode

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

29 of 44 30/03/17 20:57

Core of delay generator is a substracter working on values coded on n bits.
It is composed of :

2 loops: Ba the activation loop and Bc the computation loop. They have
the same périod than generator and can store n bits
a XOR gate
2 transistors T1 and T2
A loop B of period 6 controllable (set/reset) which can store one bit

Activation electron is inserted in Ba which drive set of loop B.
Result of V AND Vbis is inserted in computation loop when delay generator is
activated.
Bc go through XOR gate whose other input is the value contained in B.
B reset is directly bound to Bc so the first non zero bit in computation loop
empty B
Ba is bound too to a wire in direction of output with a duplicator to transistor
T1 which make it cancel itself unless B contains an electron in which case the
duplicated activated electron doesn`t reach the input inhibiting transitor T1.
When substracter contains value zero, there are nore more bits at 1 to clean B
so activation electron will reach the output and clean Ba via transistor T2.
Output is generated by the substracter underflow

Operating principle

We saw that register controler contains 2 delay generators:

One with a period 48 and so based on a 8 bits substracter: Gd48
One with a period 12 and so based on a 2 bits substracter: Gd12

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

30 of 44 30/03/17 20:57

Both generators are chained so that output electron from period 48 generator
activate period 12 generator
Command electron from register controler go inside electron doubler, the 2
generated electrons are sent:

on Vbis input of Gd12 at the same time the 2 LSB electrons of register
Id reach its V input
on input of 8 electrons burst generator

The 8 electron burst is sent on Vbis input of Gd48 at the same time that the 6
MSB electrons of Register Id reach V input
The first of the 8 electrons is sent too on GSdown command while output of
Gd12 command GSsup

The use of 2 generators delays with different periods allow to generate huge
delays (Gd48) with a thin granularity of 12 generations (Gd12) which finally
give a delay d between activation of GSup and GSdown defined as the
following:

d = 48 * (RegisterId[7:2] >> 2) + 12 * RegisterId[1:0]

ignoring propagation constants

Control Unit

Operating principle

This the unit that drive the execution of Wireworld Computer by managing
instruction cycle (https://en.wikipedia.org/wiki/Instruction_cycle):

Fetch(1/2) : Read Program Counter from Register[63]
Fetch(2/2) : Read instruction MOV Rs Rt contained in Register[Program
Counter]
Decode(1/2) : copy value Rs on Register Id input of register read access
controller
Decode(2/2) : copy value Rt on Register Id input of register write access
controller
Execute(1/2) : Read value V contained in Register[Rs]
Execute(2/2) : Write value V contained in Register[Rt]
Incrementation of Program Counter to go to next instruction

To improve execution speed of Wireworld Computer all Fetch/Decode/Execute
steps are done in parallel
By example step 1 of Fetch is done via a dedicated wire which allow to perform
Execute(1/2) at the same time
Finally it leads to do 2 read operations for one write Operation
This is visible in the design by an output wire after 5th frewuency clock divier
that command register read access controler and an output wire after register
write access controler

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

31 of 44 30/03/17 20:57

The following array summarise ordering of the different operations

Operation
1

Operation
2

Operation
3

Read
Register

Id

Write
Register

Id
Data read

Data
to

write

Fetch(1/2) Execute(1/2) Decode(2/2) PC value

Result
from
previous
Fetch(2/2)
= Rt

V =
Content
Register
Rs

Fetch(2/2) Execute(2/2) Decode(1/2) Rs
Instruction
pointed by
PC

V

Implementation

Inputs/Outputs

The control unit has
the following inputs:

Data D coming
from register
bank
Program
Counter value
or PC
Read command
Cr
Double electron
from register
read access
controller
Write
command/PC
read command

The control unit has the 2 following outputs:

Read register Id
Write Register Id/ Data to write

Internal architecture

Unit control is made up of the following elements:

Incrementer
XOR gate
Double A AND NOT B L1 gate

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

32 of 44 30/03/17 20:57

OR gate
Transistor Tpc
Triple XOR gate
Transistor Tr
Transistor Tw

Operating

Read command electron start a burst generator whose stop is driven by
electrons generated by register read access controller electron doubler which
generates a 16 electrons burst
Burst electrons go to the input of transistors Tr and Tw.
In case transistors are not locked burst electrons are sent:

By Tr on Register Id input of register read access controler
By Tw on Register Id input of register write access controler and on Data
wire of register bank write side

The path of Data bus Data is very long so that Data arrives at register input at
the it is activated by rising and falling burst of register write access as defined
by Decode(2/2)'.
During Decode(1/2) value is on Data bus is not an instruction so timings are
computed so that it arrives on Register Id input between 2 write command so it
has no effects.
It was previously said that Tr and Tw are unlocked only when they are not
driven so when sending a burst on input it means that Output = NOT Input
control
During read operation on registers the output is NOT of register content and
this result arrive on input control of Tw so the output of Tw is the value
contained in register.
Read operation can be a register read or PC read in case of instruction fetch so
there is some logics to manage both cases.
Write command electron is sent too to PC register
It starts PC incrementer and a burst generator that produce 8 electrons

PC/Data register selecter

Generated burst is sent to a XOR gate whose other input receive PC value.
XOR gate output so produce NOT(PC) which arrive on double A AND NOT B
gate L1 whose other input receive PC. By this way both inputs never receive 1
at the same time so the gate behave as a wire cross and bottom output produce
PC wherase top output produce NOT(PC).
NOT(PC) output is bound on the input of OR gate whose other input receive
data coming from registers.
OR gate output is bound on transistor Tpc driven by PC value.

In case of simple register read XOR gate has input at 0 so its output is PC.
L1 gate perform AND NOT of PC and PC so output remains 0 so OR gate
output is value coming from registers, as Tpc is not driven value go in

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

33 of 44 30/03/17 20:57

direction of Tr
transistor through
wire crossing
implemented by the
triple XOR gate.

In case of PC fetch
OR gate receive in
input value coming
from registers and
NOT(PC).
Tpc transistor is
driven by PC do
transistor output is
((NOT(DATA)) OR
(NOT(PC))) &
NOT(PC).

When PC bit is 1
output is zero
When PC bit is zero output is NOT(Data) OR NOT(PC), as PC bit is zero
OR output is 1. PC drives Tpc so transitor output is NOT(PC)

PC incrementer

PC value go throught
incrementer XOR
gate whose other
input come from a
period 6 loop Linc.
This loop is loaded by
PC read command
electron and the
reset is driven by the
output of a transistor
Tr driven by PC bits
and whose input is
supplied by a period
6 clock L
If PC bit is at 1 then transistor Tr is locked so electron coming from clock L
doesn't reset loop Linc and does not lock transistor To so electron emitted by
L reach register output which allows to have PC value at register output
despite incrementer logic
If PC bit is at 0 then transistor Tr is unlocked so electron coming from clock L
reset loop Linc and lock transistor To so electron emitted by L does not reach
register output which allows to have PC value at register output despite
incrementer logic. Due to propagation delay Linc is clear only after value it
contains has been XORed with PC bit so first PC bit with zero value is set to 1
From arithmetic point of view while PC bits are at 1 Linc keep value 1 so PC

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

34 of 44 30/03/17 20:57

bits are XORed to zero, the first zero bit will be set to 1 while Linc will be
empty so next bits will remain unchanged. This is an increment.

Described in algorithmic way we obtain the following code for n=4 wit n the
number of bits coding PC value:

// this code start to be executed when reading PC
bool B = true;
// PC value
bool PC_in[8]
// PC value
bool PC_out[8]

for(int I = 0 ; i < 8 ; ++i)
{
 PC_out[I] = B ^PC_in[I];

if(!PC_in[I])
{

 B = false;
}

}

If we apply this code to a numeric value like b00000000 (LSB first) so 0

Index 0 1 2 3 4 5 6

PC_in[Index] 0 0 0 0 0 0 0

B value 1 0 0 0 0 0 0

PC_out[Index] 1 0 0 0 0 0 0

So an output value of b10000000 (LSB first) so 1 what was expected

If we apply this code to a numeric value like 11100000 (LSB first) so 7

Index 0 1 2 3 4 5 6

PC_in[Index] 1 1 1 0 0 0 0

B value 1 1 1 1 0 0 0

PC_out[Index] 0 0 0 1 0 0 0

So an output value of 00010000 (LSB first) so 8 what was expected

Registers

There are 64 and are composed of:

a loop of periode 96 used to store the data, a 16 bits word in 6 microns
logic to write in register
logic to read from register

Registers are serial registers meaning that they should written and read bit by
bit

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

35 of 44 30/03/17 20:57

Register write

Operating principle

To write in a register it is needed to generate a write command and to present
a data on register input
In wireworld computer data arrived from wire bound at register bank top right
and will fall along register bank through a logic gate stream
Write command is generated at level of a single register and should be
synchronised with the data so that they both arrive at the same time on
register and data should be synchronised too with register loop so that first bit
of data to be written is introduced in register at the location of the first bit
stored in the loop
Write command will stop data propagation along bank register and will
"deflect" it inside register
Write command is generated by register write access controller via 2 electron
bursts

One that raise along a wire located on the right of write logic mechanism
One that fall between previous wire and data wire

So cells located in input of each register should implemnt the following
features:

Propagation of data to be written to bottom of register bank
Propagation of rising and falling bursts along register bank
Sending data to register selected by collision of rising and falling burst

Implementation

The write logic
is composed of
the following
gates:

2 AND
NOT
gates
called
Lsel1
Lsel2
1 double
AND
NOT gate
called X
2 AND
NOT gates called 'Lndata1 Lndata2
1 OR gate

Detection of collision is performed thanks to logic gates Lsel1 et Lsel2 which

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

36 of 44 30/03/17 20:57

implement the following function:

f = (rising_burst AND NOT (rising_burst AND NOT falling_burst))

By this way f value is 1 only when rising_burst and falling_burst are at 1 the
same time which is the case during their collision

Gate X receive as input data to write and f, its bottom output is bound to top
input of next register's X gate and income timings are computed in such a way
that

If f is 0 data to be writtend is propagated to the bottom of register bank
If f is 1 data is not propagated to the bottom and top output of X is f'=f

Value contained in register go through OR gate via A input and f` is bound on
B input so when register is selected previous value is replaced by a 16 electron
burst, when register is not selected value remains the same.
During data propagation to bottom of register bank data arrive on B input of
logic gate Lndata1 whose A input receive f'.
Output of this gate is sent to B input of Lndata2 gate whose A input receive f`
and whose output go inside register.

If f' is 0 then Lndata1 receive register value on A input and 0 on B iput so
register value remains the same
If f' is 1 then NOT(NOT(Data)) so Data arrive on register so data is
loaded inside register

Register read

Operating principle

To read a register it is needed to generate a read command and to ge the data
from register output
In wireworld computer data flows ou register on wire located at left of register
bank and will fall along a stream of logic gates
Read command is generated at level of a signle register. She must be
synchronised with register loop so that first bit of value contained in register
be at register output at the same time than the first electron of read command
Read command is generated by register read access controler via 2 electron
bursts

One that raise along a wire located on the left of read logic
One that fall along a wire located onthe left of previous wire

Cells located in output of each register should implement the following
features:

Propagation of read data to the bottom of register bank
Propagation of rising and falling burst along register bank
Read data of register selected by collision of falling and rising electron

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

37 of 44 30/03/17 20:57

bursts

Implementation

Read logic is
composed of
following
gates :

2 AND
NOT
gates
called
Lsel1
Lsel2
A double
AND
NOT gate called X
1 transistor Tr

Read of register data is done thanks Lsel1 and Lsel2 logic gates which
implement the following function:

f = (rising_burst AND NOT (rising_burst AND NOT falling_burst))

By this way f is 1 only where there is the collision of the 2 bursts.

X receive f on left input and data read from upper register on right input, its
left output is bound on right input of below register gate X , its right output is
bound to input of transistor Tr and income timings are computed so that:

If f is 0 data read is propagated to bottom of register bank
If f is 1 X right output is f'=f

f' is send to input of transistor Tr driven by value contained in register and its
output is bound to right input of register below X gate
Transistor output is f' in case register data bit is 0, so we obtain NOT(register
data) at transistor output

Special registers

They allow to perform other operations than simple read/write
Registers left/right SHIFT deal with leng of wire that ellectron follow to the
register output to expose bit[1] or le bit[15] at the time bit[0] shoudl be
exposed.
Registers NOT, AND NOT respectively use NOT, AND NOT gates to implement
the feature

Adder register

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

38 of 44 30/03/17 20:57

It use a binary adder to compute sum of inputs
Remark : in case of overflow, RS flip-flop used to propagate carry will still be
set when bit[0] of input registers will come back again inot adder inputs so
result will be R60 + R61 + 1
This particularit is used in prime computation algorithm that work with 1
complement arithmetic. In this case -1 is coded 0xFFFE and 1 is coded
0x0001 which give 0xFFFF when we sum them so -0 in 1 complement
arithmetic
To easily detect a null sum using conditional register program first execute and
overflow operationlike by example 0xFFF6 + 0xFFFE (-9 -1) which return
0xFFF5 (-10) with carry at 1 so when 10 is added the result is 0xA + 0xFFF5
+ 1 = 0x0 which will be well detected by conditional register.

Conditional register

Read of Register R56 return R55 if R56 is not null else R57

Internal architecture

This feature is implemented using the following components:

2 RS Flip-Flops FF1 and FF2
3 transistors T1,T2,T3
An OR gate
A reset loop whose period is the same than register storage loop
An electron generator in 6 microns

Operating

Reset loop put flip-flop FF1 to 0 and flip-flop FF2 to 1

Case R56 not null

Value stored in R56 contains a bit ar 1 so FF1 is set to 1 which set FF2 to 0
As FF2 is at 0 T3 is unlocked so electrons emitted by generator lock T2 so R57
value don't reach OR gate
FF2 is at 1 so T1 is unlocked what let electrons stored in R55 reach OR gate

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

39 of 44 30/03/17 20:57

Case R56 null

Value stored in R56 does not contain bit at 1 so FF1 is set at 0 and FF2
remains at 1
As FF2 is at 1 T3 is locked so electrons emitted by generator don`t reach T2,
consequently T2 is unlocked so electrons stored in R57 reach OR gate
FF2 is at 1 so T1 is locked so electrons stored in R55 don't reach OR gate

Register configuration

To make easier the execution of other software than the one provided with
wireworld computer I wrote a generic configuration file for the desing that
allow to define the content of each register at simulation startup via a
configuration file.
By automatising generation if configuration file, corresponding to a software
written in assembly, by the functionnal model of wireworld computer it become
easy to execute them on the design

Wireworld computer

Functional model

Wireworld computer design is complex and execution of a single instruction
take several hundred of generations
To te able to easily test and develop small programs for wireworld computer I
developed a functional model in C++ language which reproduce execution
pipeline and register behaviours
It generates too the configuration file corresponding to program to execute
which will load registers with values necessary to execute program on
Wireworld computer design.

Inputs/Outputs

Model receive the following parameters:

Name of file containing program to execute written in assembly
optional parameter --detailled_display to activate or not operating
details of binary/BCD converter
optional parameter --instruction_delay to define tempo duration (in ms)
between each instruction
optional parameter --output_file to define the name of configuration and
generate it

Usage is :
 wireworld.exe [OPTIONS] <program_file>
OPTIONS : --<parameter_name>=<parameter_value>
 --detailled_display=...
 --instruction_delay=...

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

40 of 44 30/03/17 20:57

 --output_file=...

During its execution functional model display the following information:

Cycle number
PC value
Instruction value
Instruction mnemonic
Source register => Read value => Destination register
Value displayed in case of write in R0 register.

Remark : functional model don't take in account delays needed to latch R0
value so in case of closer write functional model will indicate them as displayed
whereas with real wireworld computer design first value would perhaps not
had time to be be displayed before the second one be take in account.

***** Starting cycle 10*****
PC value :=> PC = 0xb
=> Instruction = 0x3b29
=> MOV R59, R41
R41 => 0x0 => R59
***** Starting cycle 11*****
PC value :=> PC = 0xc
=> Instruction = 0x30
=> MOV R0, R48
R48 => 0x0 => R0

** DISPLAY => 0

***** Starting cycle 12*****
PC value :=> PC = 0xd
=> Instruction = 0x3d3b
=> MOV R61, R59
R59 => 0x0 => R61

In case detailled_display has been activated the ouput will display details of
internal operating of Binary/BCD converter

Assembly format

Assembly format used as input of functional simulator is very simple :

Comments start with a ; and end with line return
There is one line per register with the following syntax

register_number : [<optional_label> :] (Value | Instruction)

By example:

; Register | Action on read | Action on write
;--
; R0 | Returns zero | Writes value to display module
; R1-R52 | Reads value from register | Writes value to register
; R53 | Returns bitwise AND of R54 with NOT R53 | Writes value to register
; R54 | Returns bitwise AND of R53 with NOT R54 | Writes value to register

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

41 of 44 30/03/17 20:57

; R55 | Returns zero | Writes value to register
; R56 | Returns value in R55 if register R56 is | Writes value to register
; | non-zero, and the value in R57 otherwise |
; R57 | Returns zero | Writes value to register
; R58 | Returns R58 rotated right one place | Writes value to register
; R59 | Returns R59 rotated left one place | Writes value to register
; R60 | Reads value from register | Writes value to register
; R61 | Returns sum of R60 and R61 | Writes value to register
; R62 | Reads NOT R62 | Writes value to register
; R63 | Returns program counter value | Causes branch to given target
;--
0 : UNUSED
1 : MOV R62, R42 ; Compute negative value of upper limit
2 : MOV R55, R47 ; Prepare branch if limit non reached
3 : MOV R57, R44 ; Prepare branch if limit reached
4 : MOV R61, R50 ; Load -1 in adder as second operand
5 : MOV R60, R62 ; negative (upper limit - 1) as first operand of adder
6 : MOV R60, R61 ; perform addition to set the Carry
7 : MOV R61, R41 ; current variable as second operand of adder
8 : MOV R56, R61 ; perform addition
9 : MOV R63, R56 ; Branch on addition result
10 : MOV R59, R41 ; Prepare computation of 2 * V
11 : MOV R0 , R48 ; Display square of variable
12 : MOV R61, R59 ; Prepare computation of 2 * V + square(V) by setting 2 * V as second operand of adder
13 : MOV R60, R48 ; Prepare computation of 2 * V + square(V) by setting square(V) as first operand of adder
14 : MOV R61, R61 ; Compute addition of 2 * V + square(V) and set it as second operand of adder
15 : MOV R60, R45 ; Preparing addition of increment by setting 1 as first operad of adder
16 : MOV R48, R61 ; Compute the new square value and store it
17 : MOV R61, R41 ; Prepare V + 1 by setting V as second operand of adder
18 : MOV R63, R43 ; Preparing branch at the beginning of the loop
19 : MOV R41, R61 ; Incrementing current variable
20 : MOV R63, R44 ; Branching on end of the loop
21 : MOV R0 , R46 ; End of loop
22 : 0x0000
23 : 0x0000
24 : 0x0000
25 : 0x0000
26 : 0x0000
27 : 0x0000
28 : 0x0000
29 : 0x0000
30 : 0x0000
31 : 0x0000
32 : 0x0000
33 : 0x0000
34 : 0x0000
35 : 0x0000
36 : 0x0000
37 : 0x0000
38 : 0x0000
39 : 0x0000
40 : 0x0000
41 : <V> : 0x0000 ; Initialisation running variable to 0
42 : 0x000a ; Set upper limit - 1
43 : 0x0004 ; Branch value to restart the loop
44 : 0x0014 ; Branch value to end the loop
45 : 0x0001 ; Increment value
46 : 0xffff ; Final value
47 : 0x000a ; Branch value to continue the loop
48 : <SQ>: 0x0000 ; Current square value
49 : <DB>: 0x0000 ; Store double of current value
50 : 0xfffe ; -1
51 : 0x0000
52 : 0x0000
53 : UNUSED
54 : UNUSED
55 : UNUSED
56 : UNUSED
57 : UNUSED
58 : UNUSED
59 : UNUSED
60 : 0x0000
61 : UNUSED
62 : UNUSED

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

42 of 44 30/03/17 20:57

63 : <PC>: 0x0001 ; Initial PC

Use

Functional model allowed me to test development of programs for wireworld
computer.
By example a loop to display square of first ten integers. Interest of this
program is to succeed to compute successive square despite the lack of
multiplication.
It is based on the fact that pow(n+1,2) = pow(n,2) + 2 * n + 1 which is 2
additions and one shift in case previous square value has been stored.
I wanted to use this principle to optimise the prime number computation
program provided with wireworld computer assuming it is not necessary to
search divisor greater than square_root(n) to determine if n is prime
As computing square_root(n) is not so easy I decided to start from minimum
square and root: 1 and 1 and then to compute next square and root at each
time new candidate is greater than current square.
The goal was to limit the number of time substraction loop is executed to
simulate division of prime candidate p by divisor q
It is equivalent to divide the number of divisions of candidate p by 2 but
increase code complexity:

It is needed to perform a more complex test on p and q : comparison with
square_root and square which imply substrction and result sign check
It requires more test instruction with branch preparation it implies

Given the URISC (https://en.wikipedia.org
/wiki/One_instruction_set_computer#urisc) architecture of wireworld computer
if leads to an important code expansion which finally cancel the gain coming
from reduce number of division and make alogrithm slightly slower than
original one by using near the whole registers of processor.
The last point forced me to carrefully think the way to write the code and to
correctly use register init values to succeed to make the wole program take
place in registers

Conclusions
I'm still fascinated by this cellular automaton that allow to simulate such
complex thinks like a small URISC processor with 64 registers of 16 bits depite
its simple rules.
Wireworld Computer allowed me to discover architectures URISC
(https://en.wikipedia.org/wiki/One_instruction_set_computer#urisc) and TTA
(https://en.wikipedia.org/wiki/Transport_triggered_architecture) I was not
aware of before and that I plan to reuse in my FPGA experimentations
The time spend to develop for Wireworld Computer make me also conscious of
the limitations of this kind of architecture.
Reverse engineering of Wireworld Computer design increased my admiration

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

43 of 44 30/03/17 20:57

for those who designed it and I still find a kind of magic when seeing it in
simulation despite I now understand its details

Récupérée de « https://www.logre.eu/mediawiki
/index.php?title=Projet_Wireworld/en&oldid=11804 »

Catégories : Software C++ Projets

Dernière modification de cette page le 22 janvier 2016 à 16:16.
Le contenu est disponible sous licence Creative Commons attribution
partage à l'identique sauf mention contraire.

Wireworld Project — Wiki LOGre https://www.logre.eu/wiki/Projet_Wireworld/en

44 of 44 30/03/17 20:57

