
Wireworld++: A Cellular Automaton for
Simulation of Nonplanar Digital
Electronic Circuits

Vladislav Gladkikh

School of Information Technologies and Engineering, ADA University
11 Ahmadbay Agha-Oglu Street, Baku, AZ1008, Azerbaijan

Alexandr Nigay

Department of Computer Engineering and Telecommunications
International University of Information Technologies
Manas Str./Zhandosov Str., 34A/8A, Almaty, 050040, Kazakhstan

An enhanced version of the Wireworld cellular automaton called
Wireworld++ is introduced. It can be considered as a generalization of
Wireworld suitable for modeling digital electronic circuits that have
intersections of unconnected wires. As most electronic circuits except
trivial ones have wire crossings, Wireworld++ is a more convenient cel-
lular automaton for modeling digital electronics than the conventional
Wireworld. Wireworld++ is two dimensional; it has a small number of
states and simple and intuitive rules. Despite that, it allows simulation
of three-dimensional elements of digital circuits, for instance, wire cross-
ings or electronic components placed on both sides of printed circuit
boards. The key electronic parts, such as logic gates, implemented in
Wireworld++ exhibit more symmetry and utilize fewer cells than their
Wireworld counterparts. Wireworld++ can also be applied to simula-
tion of computing devices in a sub-excitable, light-sensitive Belousov–
Zhabotinsky medium organized in a rectangular grid of vesicles.

Keywords: Wireworld; digital electronics; wire crossings; logic gates;
Belousov–Zhabotinsky reaction

Introduction1.

Wireworld is a cellular automaton that can simulate digital electronic
circuits. It was invented by Silverman in 1987 (e.g., [1]) and later pop-
ularized by Dewdney [2]. As in the case of another famous cellular
automaton—Conway’s Game of Life [3]—complex dynamics arise in
Wireworld from very simple rules and a small number of states. Like
the Game of Life, Wireworld is Turing complete.

Wireworld is defined on a two-dimensional rectangular grid. Each
cell can be in one of four different states: empty, electron head, elec-
tron tail and conductor. The state of each cell at the next moment of
time is determined by its current state and the states of the cells in its

https://doi.org/10.25088/ComplexSystems.27.1.19

https://doi.org/10.25088/ComplexSystems.27.1.19

Moore neighborhood. The Moore neighborhood consists of a central
cell and the eight cells that surround it (e.g., [4]). The cells change
their states according to the following rules:

Empty cells always stay empty. 1.

If a cell is an electron head, its next state will be an electron tail. 2.

If a cell is an electron tail, its next state will be a conductor cell. 3.

A conductor cell becomes an electron head if one or two of the neigh-
boring cells are electron heads. If a conductor cell has fewer than one
or more than two neighbors that are electron heads, it remains a
conductor.

4.

Wireworld contains all elements necessary to simulate any digital
device. Data in Wireworld is represented by patterns of moving
electrons. An electron consists of two cells—an electron head and an
electron tail. Using different arrangements of conductor cells, it is pos-
sible to construct structures that generate data, wires for carrying
data from one place to another, valves for data transformation and
memory elements. Logic gates and other data processing construc-
tions have been simulated in Wireworld. The Wireworld computer, a
Turing-complete computer implemented as a cellular automaton, was
designed by Moore, Owen and others between 1990 and 1992 [5].
Various other cellular automata can be built within Wireworld, for
example, elementary cellular automata [6] and Langton’s Ant [7]. Fig-
ure 1 shows an 8-bit multiplier by Gardner [8]. This figure as well as
all other cellular automata simulations in the paper are generated in
the Golly software [9, 10].

Figure 1. An 8-bit multiplier in Wireworld, designed by Gardner [8].

20 V. Gladkikh and A. Nigay

Complex Systems, 27 © 2018

Since the conventional Wireworld is strictly two dimensional, it
cannot simulate wire crossings in a straightforward way. The problem
of wire crossings is solved in Wireworld through a workaround, by
employing specific configurations of conductor cells with two inputs
and two outputs. These configurations perform the function of a wire
crossing, provided that some specific conditions are met for the den-
sity of electrons and the direction of their movement. This method
has several drawbacks. First, such configurations do not look like
intersections. This complicates the analysis of the circuit. Second,
these wire crossings behave like data processing valves, not like sim-
ple wires. In particular, some of them introduce delays. Third, they
employ a lot of cells. These valves are just artifacts that arise from
dimensionality reduction.

To address these drawbacks, we introduce a new cellular automa-
ton, Wireworld++. Conceptually, Wireworld++ is a generalization of
the conventional Wireworld to the cases where all circuit elements do
not have to lie inside a single two-dimensional circuit board. Jumper
wires, multilayered conductive tracks and stacking of components on
top of each other are naturally modeled in Wireworld++. In spite of
the presence of these nonplanar elements, Wireworld++ is a two-
dimensional cellular automaton.

Nonplanar digital circuits are ubiquitous. Figure 2 shows a simple
example of a nonplanar circuit, a 4-bit barrel shifter—one of the stan-
dard combinational components of microcontrollers and microproces-
sors. Its nonplanarity can be proved using Kuratowski’s theorem [11],
which says that a finite graph is planar if and only if it does not con-
tain a subgraph that is a subdivision of K5 (the complete graph on

five vertices) or K3, 3 (complete bipartite graph on six vertices, three

of which connect to each of the other three). This circuit can be mod-
eled by a graph shown in Figure 3 where components (multiplexers)
are represented by squares, while metallic interconnections are repre-
sented by dots. The graph in Figure 3 is a complete bipartite graph
K4, 4. It contains K3, 3 subgraphs, therefore it is nonplanar.

Figure 2. A 4-bit barrel shifter implemented using 4-to-1 multiplexers [12].

Wireworld++: Simulation of Nonplanar Digital Electronic Circuits 21

https://doi.org/10.25088/ComplexSystems.27.1.19

https://doi.org/10.25088/ComplexSystems.27.1.19

Multiplexers in Figure 2 are not elementary components. They are
composed of switches, which nowadays are usually transistors. If we
consider electronic circuits at a switch level, then we see that even sim-
pler circuits are not planar. For example, consider an XOR gate,
implemented in the CMOS logic family. The circuit is shown in Fig-
ure 4. It can be modeled by a bipartite graph in the same way as the
previous example. Figure 5 shows that this graph contains a subgraph
that is a subdivision of K3, 3. Therefore, this circuit is nonplanar

according to Kuratowski’s theorem. Modern integrated circuits may
contain thousands of XOR gates as well as other, more complex non-
planar blocks. Even though the individual devices (transistors, capaci-
tors, resistors, etc.) in integrated circuits are patterned on a single
plane in a semiconductor wafer, metallic interconnections between
them are organized in several layers isolated from each other by insu-
lating layers [13, 14].

Figure 3. A graph that models the circuit from Figure 2. Components
(multiplexers) are represented by squares. Metallic interconnections are repre-
sented by dots.

Figure 4. A CMOS XOR gate [12].

22 V. Gladkikh and A. Nigay

Complex Systems, 27 © 2018

Figure 5. A graph that models: (a) the XOR gate from Figure 4; and (b) its
subgraph that is a subdivision of K3, 3.

Uniform Streams of Electrons2.

In this section, we outline a few concepts required for the rest of the
paper.

A wire is a sequence of conductor cells such that any pattern of
electrons is preserved while moving along this sequence. A wire can
be used for carrying data from the place where the data is generated
to the place where it is transformed.

A stream of Wireworld electrons moving along a wire is called a
uniform stream if it consists of electrons separated by the same dis-
tance. Such a stream can, for example, be generated by a clock, which
is usually a circular structure with one or more electrons circling
around it. Clocks have other forms as well. The period of a uniform
stream of electrons is calculated as the number of cells between two
subsequent electron heads in the stream (excluding the heads them-
selves) plus one. Because each electron occupies two cells, and at least
one gap is necessary between successive electrons in a stream, the
smallest possible period is equal to 3. Figure 6 shows uniform streams
of electrons of periods 3, 4 and 6, each generated by its own clock.

For simplicity, we refer to a uniform stream of a period n as a
signal of period n. Different authors use different terms for the same
concept. Scherer calls it “n-cycle data.” Moore and Owen call it
“n-micron signal” [5]. Heise uses the term n-tick to denote the period
n [7]. We prefer the term “a signal of period n,” because n quantifies
the signal in relation to both time and space. The number n specifies
the time period of the signal, because exactly n cellular automaton
generations pass between the time moments when a particular cell is
in the electron head state. If one considers the stream of Wireworld
electrons as a propagating wave, then the period of the wave is equal
to n. Here, electron heads play the role of crests or troughs.

Wireworld++: Simulation of Nonplanar Digital Electronic Circuits 23

https://doi.org/10.25088/ComplexSystems.27.1.19

https://doi.org/10.25088/ComplexSystems.27.1.19

Alternatively, the number n is equal to the wavelength of this wave
measured in the number of cells. This shows that the same n deter-
mines the period of the signal in space.

Figure 6. Signals of period 3, 4 and 6 (from top to bottom). The electron head
is blue; the electron tail is gray.

A signal of period n can also be thought of as direct current. In this
point of view, n is inversely proportional to the rate of the current.
The less n is, the closer the electrons are to each other and the more
electrons pass through a conductor cell per unit time, which means
the higher the current rate.

Moore, Owen and coworkers built their Wireworld computer
using logic gates that work with signals of period 6 [5]. In his original
paper, Dewdney suggested processing signals of period 13 [2].

Signals of small periods tend to require valves that include large
arrangements of conductor cells (see e.g., [15] for comparison of Wire-
world processing valves for different n). This is undesirable, because
the larger the Wireworld circuit is, the more possibilities for errors,
especially in its implementation in unconventional hardware, such as
in chemical substances. One of the goals in designing Wireworld
circuits is to use a minimum number of cells that fulfill the desired
function. Another design goal is minimization of delays in signal prop-
agation. Delays may occur when the signal goes through a processing
valve, especially if the valve is complicated. Delays can also be intro-
duced intentionally in order to synchronize two or more signals that
are out of phase. In any case, delays are undesirable because they
slow down processing and increase the number of conductor cells. We
took into account these goals when designing our Wireworld++.

Wireworld++3.

The cellular automaton that we introduce in this paper, Wireworld++,
was inspired by the existence and ubiquity of electronic circuits that
have intersections of unconnected wires. Even though electronic

24 V. Gladkikh and A. Nigay

Complex Systems, 27 © 2018

circuits are sometimes considered to be two dimensional, assembled
on planar printed circuit boards, in reality, only the simplest circuits
are strictly two dimensional. A printed circuit board for any nontriv-
ial electronic device has either jumper wires or conductive tracks on
both sides. More complicated devices require multilayer boards. All
digital circuits can be modeled by Wireworld. However, our enhanced
version, Wireworld++, models wire intersections and processing
valves more intuitively and makes them simpler in appearance, as is
shown in the subsequent sections.

Like the conventional Wireworld, Wireworld++ is defined on a
two-dimensional rectangular grid. Being two dimensional, it neverthe-
less can describe three-dimensional elements, like wire crossings or
multiple components placed on top of each other. Using three-dimen-
sional automata for these constructions is possible, but would result
in computational complexity not justified by the relatively small num-
ber of the points where the third dimension is used. Instead, we
decided to stay in two dimensions but introduce a few extra states
and rules that are used only in those places where we need the third
dimension. A similar approach and justification was employed in the
work by Feijs in which he designed two-dimensional cellular
automata for simulating analog electronics [16].

The state space of Wireworld++ consists of the following states:

Empty 1.

Strong head 2.

Strong tail 3.

Strong conductor 4.

Weak head 5.

Weak tail 6.

Weak conductor 7.

The first four states in this list are analogous to the states of the
conventional Wireworld. This is also true for states (1), (5), (6) and
(7). Any Wireworld pattern can be constructed using only states (1)
through (4), where the empty state and the strong conductor state cor-
respond to Wireworld’s empty and conductor states, while the strong
head and the strong tail states correspond to Wireworld’s electron
head and tail. Alternatively, any Wireworld pattern can be created
using only states (1), (5), (6) and (7). Here again, state (1) can be used
as Wireworld’s empty state, state (5) as Wireworld’s electron head,
state (6) as the electron tail and (7) as the conductor. In order to
model intersections of unconnected wires, both weak and strong
states are required, which will be detailed in the next section.

Wireworld++: Simulation of Nonplanar Digital Electronic Circuits 25

https://doi.org/10.25088/ComplexSystems.27.1.19

https://doi.org/10.25088/ComplexSystems.27.1.19

The transition rules of Wireworld++ are as follows:

Empty cells stay empty. 1.

A strong conductor cell becomes a strong head if one or two of its
neighboring cells are strong heads.

2.

A strong conductor cell becomes a strong head if exactly two of its
neighboring cells are weak heads.

3.

A strong head becomes a strong tail. 4.

A strong tail becomes a strong conductor. 5.

A weak conductor becomes a weak head if one or two of its neighbor-
ing cells are weak heads.

6.

A weak conductor becomes a weak head if exactly one neighboring cell
is a strong head.

7.

A weak head becomes a weak tail. 8.

A weak tail becomes a weak conductor. 9.

Rules (1), (2), (4) and (5) are those of conventional Wireworld
applied to the strong states. Rules (1), (6), (8) and (9) are the conven-
tional Wireworld rules for the weak states. We see that any Wire-
world++ pattern that contains only states of the same strength (only
weak or only strong) is a conventional Wireworld pattern. Therefore,
Wireworld is a special case of Wireworld++. These rules imply that
only strong signal carriers can travel along strong wires, and only
weak carriers along weak wires.

Rules (3) and (7) refer to the interactions of strong and weak
states. These rules are not symmetric. A strong conductor cell requires
two weak heads to become a strong head, while just one strong head
is sufficient for a weak conductor cell to become a weak head. This
clarifies the terms “strong” and “weak.” The weak head can be
thought of as two times “weaker” than the strong head, because two
of them are required to invoke a signal in a strong conductor. This
asymmetry turns out to be important for modeling three-dimensional
circuits by two-dimensional cellular automata.

Wireworld++ can be thought of as the result of some algebraic
operation (let us denote it *) on two conventional Wireworlds:

W++ W *W. (1)

This operation takes the states and the rules of its operands and
builds new states and new rules from them. Depending on the opera-
tion * and its operands, the result may have duplicate states and rules,
so only one instance in each duplicate should be retained. In our case,
such a duplicate state is the empty state, and a duplicate rule is the
rule that says that the empty state never changes. The result of this

26 V. Gladkikh and A. Nigay

Complex Systems, 27 © 2018

operation may also have additional rules that specify what the next
state should be when the states from different operands are in the
same neighborhood. In our case, these are rules (3) and (7). It seems
natural that Wireworld++ is built only from Wireworlds and no other
cellular automata, because the same physical system is simulated in
both wires and intersections of unconnected wires. The intersection
should not add any new physics; it is just two wires, one above the
other, which is reflected in equation (1). The same line of thought can
be applied not only to intersections of unconnected wires, but also to
electronic components (diodes, transistors, logic gates, multiplexers)
placed on top of each other, for example, on both sides of a printed
circuit board. Theoretically, this could be generalized to intersections
of more than two wires at the same point, in which case the resulting
cellular automaton would be

W++ W *W *⋯ *W. (2)

However, the number of states and rules for such an automaton
would be prohibitively high, and it would not bring any advantage in
simulation of digital circuits, as intersections of more than two wires
are extremely rare. Even if they are present in a certain circuit, they
can be modeled as intersections of pairs of wires in close but separate
points. Furthermore, it turns out to be possible to implement multiple
wire crossings at one point in Wireworld++ constructed according to
equation (1), as we will show in the next section. This further dimin-
ishes the necessity of the complicated automaton equation (2).

We decided not to use the word “electron” in the names of the
Wireworld++ states. This is because even in the case of electric cur-
rent, charge is not always carried by moving electrons. In some sub-
stances (such as electrolytes or plasma), charge is carried by moving
ions. Moreover, the design or analysis of electronic circuits rarely
requires studying the flow of electrons. In most cases, it is sufficient to
work in terms of voltages and currents described by Kirchhoff’s laws,
Ohm’s law and a few other theorems, without going to lower levels of
physical abstractions [16]. There is also research on modeling digital
circuits by cellular automata related to implementations of computing
devices in chemical, biological or other systems that are called
“unconventional” by computer scientists to contrast them with con-
ventional electronics based on semiconductor technology (e.g., [17,
18]). Signals in those systems do not have to be carried by electrons.
They can be transferred by chemical reactions or by traveling local-
ized excitations, like in a light-sensitive Belousov–Zhabotinsky (BZ)
medium (e.g., [19]). What is important for a charge carrier is that it
moves like a free particle in empty space. When such a carrier is mod-
eled by some totalistic, isotropic cellular automaton, at least two cells
(head and tail) are required to represent it moving in a certain

Wireworld++: Simulation of Nonplanar Digital Electronic Circuits 27

https://doi.org/10.25088/ComplexSystems.27.1.19

https://doi.org/10.25088/ComplexSystems.27.1.19

direction; the direction of the movement can be specified by a directed
line segment starting from the cell that is in the “head” state and end-
ing in the cell that is in the “tail” state. Even though we occasionally
use the word “electron” in this paper for simplicity to denote a signal
carrier, we omit it in the formal definitions and rules. It is possible to
simulate a movement of the signal carrier by a single cell if we employ
nontotalistic and nonisotropic rules that take into account the exact
relative positions of the neighbors (e.g., [20]). Such a rule can be, for
example, “the cell changes to a carrier state if the cell to the left is a
carrier.” However, in this paper we work on a generalization of Wire-
world that is isotropic and totalistic, so we decided to stay in the
same class of cellular automata.

Wire Crossings4.

In classical electronic design, when two unconnected wires cross, we
assume that currents can in principle flow along these wires in any
direction. We also assume that the rate of current can have any value,
and that the currents in different wires do not influence each other.
These assumptions may not always hold in actual electronic circuits,
but attempts are being made to minimize parasitic influence of wires
on each other, and the most appropriate wire thickness is usually cho-
sen for a specific range of currents.

When wire crossings are simulated by cellular automata, additional
complications arise, because wire crossings are modeled by valves that
may not have all the properties of a bunch of nonintersecting conduc-
tors. Some of these valves can model wire crossings only when the cur-
rent goes in one particular direction. Other valves model wire
crossings when electrons flow only along one of the wires, but not
when they enter the intersection simultaneously from two different
wires.

A Wireworld wire crossing is called unidirectional if it allows data
to pass correctly only in one direction. The crossing may not work
correctly when data is sent from the other direction. A Wireworld
wire crossing is called bidirectional if it correctly passes the data in
both directions. A Wireworld wire crossing is called single channel if
only one stream of data can pass through it at any given moment of
time. A Wireworld wire crossing is called double channel if two
streams of electrons can pass through it simultaneously.

The asymmetry of the Wireworld++ rules allows constructing a
wire crossing as shown in Figure 7. Throughout the paper, we use
lighter colors for the strong states and darker colors for the weak
states. The wires consist only of the strong conductor cells. The wire
crossing contains only weak conductor cells. That means that we need

28 V. Gladkikh and A. Nigay

Complex Systems, 27 © 2018

weak cells in those places where the circuit needs the third dimension,
as in the case of wire crossings.

Figure 8 shows the successive snapshots of a single electron passing
through the intersection. Upon entering the intersection, the strong
head creates two weak heads. These two weak signal carriers move
through the intersection together and produce a strong head in the
first strong conductor cell after the intersection, according to rule (3).
The weak heads do not affect the wires on the sides because only one
weak head touches each wire, whereas, according to rule (3), two
weak heads are required for a strong conductor cell to become a
strong head.

Figure 7. A bidirectional, single-channel wire crossing for signals of period
n ≥ 4.

Figure 8. The successive snapshots of a single electron passing through the
wire crossing (from left to right, top to bottom).

Wireworld++: Simulation of Nonplanar Digital Electronic Circuits 29

https://doi.org/10.25088/ComplexSystems.27.1.19

https://doi.org/10.25088/ComplexSystems.27.1.19

This wire crossing does not introduce any delay compared to a
straight wire. It is a single-channel, bidirectional crossing that works
for signals of period n ≥ 4. To the best of our knowledge, there is no
wire crossing in the conventional Wireworld that is so simple and
looks so much like a real intersection of unconnected wires. The clos-
est Wireworld analog that we could find is a wire crossing shown in
Figure 9 that works for signals of period n > 4 [15]. However, this
wire crossing is unidirectional. It allows signals to pass correctly only
from left to right. Moreover, it contains more cells than our Wire-
world++ construction, and it looks like a processing valve rather than
a wire crossing.

Figure 9. A unidirectional Wireworld wire crossing for signals of period n > 4.

The wire crossing in Figure 7 is single channel, so if two signals are
sent simultaneously toward the intersection along the perpendicular
wires, they will disappear at the square of weak cells. Wireworld elec-
trons also disappear if they travel in the same wire toward each other
and collide. In case two signals arrive simultaneously from two oppo-
site directions toward this wire crossing, they will exit the square of
weak cells along the two other wires perpendicular to the incoming
wires. Because of such behavior, this intersection can be thought of as
two Γ-shaped insulated wires placed close to each other. It is an inter-
esting feature of the cellular automata that the same configuration of
cells can have different interpretations and serve different purposes,
depending on the dynamics around it.

Figure 10 shows why this wire crossing does not work for signals
of period three but works for signals of period greater than or equal
to four. Let us send the alternating sequence 101010… along one
wire and the sequence 010101… along another wire. The wire cross-
ing is single channel, but in this case the electrons do not enter the
wire crossing simultaneously, so it is expected to work properly.
When a logic one enters the wire crossing from one wire, a logic zero
enters it from another wire, and vice versa. In Figure 10, we see that
when the period of the signals is three, both signals change after the
wire crossing, while they pass undisturbed when their period is four.
The reason is that the square of weak cells can handle correctly only
one signal; thus the period should be large enough for both signals to
pass without interference.

30 V. Gladkikh and A. Nigay

Complex Systems, 27 © 2018

Figure 10. The signal 101 010… travels along one wire, and the signal
010 101… travels along the perpendicular wire. The signals in the configura-
tion on the left have period n 3. They cannot pass through the intersection
correctly. The signals in the configuration on the right have period n 4. The
wire crossing works perfectly for them.

We can now build wire crossings that work only for signals whose
period is not less than a specified number n. For example, Figure 11
shows two wire crossings; one of them (on the left) works only for sig-
nals of period n ≥ 5, while the other one (on the right) works only for
signals of period n ≥ 6. Both wire crossings are bidirectional, single
channel. It is straightforward to generalize this pattern for making
wire crossings that work only for larger periods. One just has to
increase the perimeter of the central figure made of weak cells. These
patterns will be used later in this paper as building blocks for making
other constructs. We see that creating wire crossings for signals of dif-
ferent periods follows a well-defined pattern in Wireworld++. We
have not seen in the literature any such patterns in conventional Wire-
world. Wire crossings in Wireworld are completely different for each
period n. We do not claim that it is impossible to find such a pattern
in Wireworld, but we doubt that it will be as simple and elegant as in
Wireworld++.

The passage of time for these crossings depends on their size. The
crossing on the left-hand side of Figure 11 has zero delay compared to
the straight wire, while the crossing on the right has a delay equal to
one time cycle. Larger crossings have a delay equal to n - 5, where n
is the smallest period of the signal that the crossing allows to pass
without errors. If two signals are sent simultaneously toward any of
these constructions along the perpendicular wires, they will disappear
at the central shape of weak cells. In case two signals enter
simultaneously from two opposite directions, they will exit the

Wireworld++: Simulation of Nonplanar Digital Electronic Circuits 31

https://doi.org/10.25088/ComplexSystems.27.1.19

https://doi.org/10.25088/ComplexSystems.27.1.19

intersection along the two other wires perpendicular to the incoming
wires.

Figure 11. Wire crossings that work only for signals whose period is not less
than a specified number n. On the left is a wire crossing that works only for
signals of period n ≥ 5. On the right is a wire crossing that works only for the
signals of period n ≥ 6. The generalization for larger n is straightforward.

As an example of modeling multiple unconnected wires that cross
in one point, consider a single channel, bidirectional wire crossing in
Figure 12. A signal can enter any wire and will exit the wire on the
opposite side of the crossing. This wire crossing employs the same
asymmetry of rules for strong and weak states as all the previous wire
crossings: a strong head appears only when two weak heads collide,
which happens at the cell exactly opposite to the entrance of the sig-
nal into the crossing. This wire crossing has no delay compared to a
straight wire for signals traveling along the vertical or horizontal
wire, but has a delay of three time cycles for signals traveling along
the diagonal wires. As we mentioned in the previous section, Wire-
world++ constructed algebraically from two instances of Wireworld is
sufficient for describing even the situations where more than two
unconnected wires cross at one point.

Figure 12. Four unconnected wires cross at one point. This wire crossing is sin-
gle channel, bidirectional.

32 V. Gladkikh and A. Nigay

Complex Systems, 27 © 2018

The construction in Figure 12 has interesting behavior when sig-
nals come to it in more than one wire simultaneously. Some examples
are given in Table 1. In some of those cases, it behaves like a wire
crossing; in others it does not.

Number of
Entering
Signals

Directions of
Entering Signals

Number
of Exiting
Signals

Directions
of Exiting Signals

2 From the
opposite sides
toward each other.

2 Along the wires
perpendicular to
the entering signals.

2 At 90◦ to each other. 2 One along the
wire that is between
the incoming wires;
the other one along the
opposite wire at 135◦

to the incoming wires.

2 At 45◦ to each other
(neighboring wires).

1 The signal that
travels in the diagonal
wire disappears;
the remaining signal
exits on the opposite side.

2 At 135◦ to each other. 2 At 135◦ to each other
but along different wires.

3 or 5
or 7

Neighboring wires. 1 Opposite to the wire that
is central to the cluster
of incoming signals.

4 Neighboring wires. 1 Along a diagonal wire that
is opposite to the diagonal
incoming signal that is
between horizontal and
vertical incoming signals.

6 Neighboring wires. 1 Along the remaining
nondiagonal wire.

8 All wires. 0 —

Table 1. The behavior of the intersection in Figure 12 when signals come to it
in more than one wire simultaneously.

The wire crossings discussed so far were single channel. Only one
signal could travel through them at a time. We can take previous con-
structs as building blocks and create double-channel wire crossings. In
Figure 13, we present a Wireworld++ double-channel wire crossing
(on the left), and compare it with its Wireworld analog (on the right)
designed by Scherer. Both wire crossings are unidirectional, work cor-
rectly for signals of period n ≥ 5, and do not introduce any delay com-
pared to a straight wire. The Wireworld++ wire crossing has half the
conductor cells of its Wireworld counterpart (26 versus 52). Also, the
Wireworld++ version looks more like a wire crossing, while the

Wireworld++: Simulation of Nonplanar Digital Electronic Circuits 33

https://doi.org/10.25088/ComplexSystems.27.1.19

https://doi.org/10.25088/ComplexSystems.27.1.19

Wireworld version looks like a valve. The directional asymmetry of
the crossing (the fact that it is unidirectional) is more visible in the
Wireworld++ case. Generalization to signals of larger periods is
straightforward and shown in Figure 14. The only difference between
the wire crossings in Figure 14 is the perimeter of the central figure
made of weak cells, which is uniquely determined by the smallest
period of the signal that we allow to pass through the crossing.

Figure 13. A Wireworld++ double-channel wire crossing (on the left), and an
analogous Wireworld intersection (on the right) designed by Scherer. Both
wire crossings are unidirectional and work correctly for signals of period
n ≥ 5. The arrows of different colors show the paths of each signal.

Figure 14. Double-channel wire crossings that work for signals whose period
is not less than a specified number n. The smallest period n is uniquely deter-
mined by the perimeter of the central arrangements of weak cells.

Finally, we would like to present a double-channel, bidirectional
wire crossing. It is shown in Figure 15 and is valid for signals of
period n ≥ 6. When only one signal passes though this wire crossing

34 V. Gladkikh and A. Nigay

Complex Systems, 27 © 2018

in any of the four possible directions, it has no delay compared to a
straight wire. If two signals entering from wires perpendicular to each
other cross it simultaneously, they are delayed one time cycle.

Figure 15. A double-channel, bidirectional wire crossing for signals of period
n ≥ 6.

Diodes and Logic Gates5.

A Wireworld++ diode is shown in Figure 16, where it is compared
with a Wireworld diode.

Figure 16. A Wireworld++ diode (top) and a Wireworld diode (bottom).

Figure 17 shows a Wireworld++ AND gate for signals of period
n ≥ 3 on the left and a Wireworld AND gate on the right designed by
Scherer [15]. The Wireworld++ version is a winner in all respects. It is

Wireworld++: Simulation of Nonplanar Digital Electronic Circuits 35

https://doi.org/10.25088/ComplexSystems.27.1.19

https://doi.org/10.25088/ComplexSystems.27.1.19

simple, clear to understand and has no delay. Moreover, the Wire-
world++ version is constructed only of conductor cells, while the Wire-
world one has to have complicated internal dynamics of circulating
electrons, including a constant supply of electrons entering it from the
opposite direction (see the rightmost electron in the figure), which
makes it practically unusable. A more popular Wireworld AND gate
is shown in Figure 18. It works for signals of period n ≥ 5. Even this
simpler version uses more cells than the Wireworld++ AND gate. The
Wireworld OR gate is as simple as a gate can be, so there is no need
to invent an alternative version here. Wireworld NOT gates are also
simple. Each NOT gate is specific for a particular period of the signal.
It consists of a clock from Figure 6 producing a signal of period n and
an interfering input that quenches this signal. These interfering pat-
terns are different in Wireworld and Wireworld++ but Wireworld++
versions are not much simpler. Just for reference, we show NOT gates
for n 4 and n 6 for both cellular automata in Figure 19.

Figure 17. A Wireworld++ AND gate (left) and a Wireworld AND gate (right)
for signals of period n ≥ 3.

Figure 18. A Wireworld AND gate for signals of period n ≥ 5.

36 V. Gladkikh and A. Nigay

Complex Systems, 27 © 2018

Figure 19. Wireworld++ NOT gates (left) and Wireworld NOT gates (right).
The gates in the top row are for signals of period n 4. The gates in the bot-
tom row are for signals of period n 6.

Figure 20 shows a Wireworld++ XOR gate for n ≥ 3 on the left
together with two Wireworld XOR gates. The gate in the center,
designed by Heise, works for n ≥ 3 [7], while the gate on the right,
designed by Walraet [21], works for n ≥ 5. The Wireworld++ XOR
gate uses fewer cells than all its Wireworld counterparts.

Using these logic gates, any digital device can be simulated.

Figure 20. A Wireworld++ XOR gate for signals of period n ≥ 3 (left) and
Wireworld XOR gates. The gate in the center works for n ≥ 3, while the gate
on the right works for n ≥ 5.

Wireworld++: Simulation of Nonplanar Digital Electronic Circuits 37

https://doi.org/10.25088/ComplexSystems.27.1.19

https://doi.org/10.25088/ComplexSystems.27.1.19

Similarities between Wireworld++ and Interacting Wave

Fragments of Belousov–Zhabotinsky Oscillating Reaction
6.

There are certain similarities between logic gates simulated in Wire-
world++ and the corresponding gates implemented by colliding wave
fragments in a sub-excitable, light-sensitive BZ medium. The BZ reac-
tion is an oscillating chemical reaction [22, 23]. Under a specific, nar-
row range of illumination, perturbations of the ruthenium-catalyzed
BZ medium lead to the formation of traveling wave fragments [24].
These wave fragments preserve their shapes and velocity for some
time, so they behave like quasi-particles [25, 26]. These traveling
quasi-particles can be used as signal carriers, and the results of their
collisions can be interpreted as computations [27–29]. Traveling wave
fragments are unstable, however. They either collapse or expand after
a short time. One approach to mitigating this instability is to divide
the reacting medium into compartments so small that a wave packet
is stable during the time it travels across the compartment. These com-
partments are called BZ vesicles [30, 31]. Each BZ vesicle is enclosed
in a membrane impassable for wave packets. A pore between two BZ
vesicles is formed at the place where they are in contact with each
other. The diameter of the pore should be such that the wave frag-
ment, entering into the vesicle, is stable while traveling across the vesi-
cle along a straight line. While inside the vesicle, the wave fragment
may collide with other wave fragments that entered through other
pores. The result of this collision may be one or more wave fragments
that exit the vesicle through yet other pores. Arranging BZ vesicles in
specific configurations, it is possible to build logic gates and more
complex computing devices. There are many possible ways to imple-
ment a particular gate. All vesicles can either be of the same size or
they can be of different sizes. They can be arranged either in a regular
or an irregular grid. The pore efficiency may either be the same for all
vesicles or different for each pair of vesicles. Here, we compare Wire-
world++ logic gates with the gates made of orthogonal arrangements
of uniform-sized BZ vesicles [32]. We notice that both BZ and
Wireworld++ gates are constructed using the same ideas. Consider the
comparison of the NOT gates implemented in each of the two sys-
tems in Figure 21. The BZ NOT gate consists of a constant source of
excitations (permanent logic one) in the topmost disk. This is analo-
gous to the clock (also a signal source) in Wireworld++. The central
vesicle, in which the reaction takes place, corresponds to the central
arrangement of weak cells in the Wireworld++ version. When the
input is zero (the left-hand side of Figure 21), the output is one. When
the input is one (the right-hand side of Figure 21), then both in the
BZ and Wireworld++ cases this input collides with the permanent
source signal, and the result of this collision misses the downward

38 V. Gladkikh and A. Nigay

Complex Systems, 27 © 2018

passage to the exit. Instead, the resulting signal carrier hits the wall of
the vesicle in the BZ case or a dead end in the Wireworld++ case at 45
degrees from the exit and disappears.

Figure 21. Similarities between implementations of a NOT gate in the BZ reac-
tion [32] and in Wireworld++.

Let us now consider a NAND gate. It is shown in Figure 22 for
both the BZ reaction and Wireworld++. The gates in both systems are
again in complete analogy with each other. When at least one of the
inputs a or b in the upper row of the vesicles is zero, then the signal
from the permanent source on the right passes unperturbed toward
the output c. When both a and b are ones, then the signals collide in
the upper central cell. The result of this collision propagates down-
ward and collides with the permanent source. The resulting wave hits
the wall of the vesicle at 45 degrees below the pore and disappears.
Exactly the same happens in Wireworld++, where there are also two
separate arrangements of weak cells corresponding to two BZ vesicles
in which collisions happen.

Figure 22. Similarities between implementations of a NAND gate in the BZ
reaction [32] and in Wireworld++.

Wireworld++: Simulation of Nonplanar Digital Electronic Circuits 39

https://doi.org/10.25088/ComplexSystems.27.1.19

https://doi.org/10.25088/ComplexSystems.27.1.19

Similar analogies can be considered between other orthogonally
arranged uniform BZ gates and Wireworld++ constructs. Therefore, it
is possible to use Wireworld++ for simulating computing devices in a
sub-excitable, light-sensitive BZ medium.

Conclusions and Future Work7.

In this paper we introduced Wireworld++, a cellular automaton that
is more convenient for simulating digital electronic circuits than con-
ventional Wireworld, especially when circuits have intersections of
unconnected wires. Most logic gates implemented in Wireworld++
utilize fewer cells than similar gates in Wireworld. We also showed
that there is close analogy in the construction and behavior of Wire-
world++ gates and corresponding gates implemented by colliding
wave fragments in a sub-excitable, light-sensitive Belousov–
Zhabotinsky (BZ) medium. Therefore, Wireworld++ can be used for
simulating computations in reaction-diffusion systems organized in a
square grid of vesicles.

Most cellular automata models of digital computations in reaction-
diffusion systems use a hexagonal grid. There are cellular automata
for modeling logic gates on a hexagonal grid, a well-known example
being the spiral rule cellular automaton [33–37]. We have not seen
any applications of cellular automata for modeling BZ gates on a
square grid, and we think that Wireworld++ is suitable for this role.
Possible future work would be generalization of Wireworld++ to the
hexagonal grid, because the design of Wireworld-type automata is dif-
ferent from the spiral rule cellular automaton. It would therefore offer
an alternative simulation scheme of these systems. Computing by trav-
eling wave fragments in networks of BZ vesicles with irregular diame-
ters, connection angles and pore efficiencies has also been studied
[32]. Generalization of Wireworld++ to such grids is another possible
future direction.

In our work, we used the software package Golly [9]. This is very
convenient software that allows simulation of a wide variety of two-
dimensional cellular automata. However, it is restricted only to
square grids. Redesign of this software for arbitrary tessellations
would be desired. Feijs worked on simulating analog electronics with
cellular automata [16]. His work and ours can be continued for
design of an automaton capable of simulating both digital and analog
systems, so it could simulate analog-to-digital and digital-to-analog
converters and electronics based on them. Finally, both conventional
Wireworld and our Wireworld++ are valid only for small currents,
because the smallest period of a signal in these cellular automata is
n 3. Electronic circuits use thicker wires and proper insulation to

40 V. Gladkikh and A. Nigay

Complex Systems, 27 © 2018

handle large currents. In Wireworld++, using thicker conductors still
does not allow signals of period less than 3. Therefore, generalization
to larger currents will require creation of a new automaton with its
own states and rules.

References

[1] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[2] A. K. Dewdney, “The Cellular Automata Programs That Create Wire-
world, Rugworld and Other Diversions,” Scientific American, 262(1),
1990 pp. 146–149.

[3] M. Gardner, “Mathematical Games: The Fantastic Combinations of
John Conway’s New Solitaire Game ‘Life’,” Scientific American, 223(4),
1970 pp. 120–123.

[4] B. Chopard and M. Droz, Cellular Automata Modeling of Physical Sys-
tems, Cambridge, UK: Cambridge University Press, 1998.

[5] D. Moore and M. Owen. “The Wireworld Computer.” (Jan 26, 2018)
www.quinapalus.com/wi-index.html.

[6] N. Malizia. “Simulate Logic Circuits Using Wireworld Cellular Automa-
ton,” Unnikked (blog). (Jan 26, 2018)
unnikked.ga/simulate-logic-circuits-using-wireworld-cellular-
automaton-11391bc26b1c.

[7] N. Heise. “3-Tick Logic.” (Jan 26, 2018)
www.heise.ws/threeticklogic.html.

[8] J. Blandy. “NickGardner.mcl.” (Jul 17, 2017)
github.com/jimblandy/golly/blob/master/src/Patterns/WireWorld/
NickGardner.mcl.

[9] A. Trevorrow, T. Rokicki, T. Hutton, D. Greene, J. Summers,
M. Verver, R. Munafo, B. Bostick and C. Rowett. “Golly.” (Jan 26,
2018) golly.sourceforge.net.

[10] GitHub. “The WireWorld++ Rule File for the Golly Software.” (Mar 3,
2018) github.com/burubaxair/wireworld-pp.

[11] K. Kuratowski, “Sur le problème des courbes gauches en topologie,”
Fundamenta Mathematicae (in French), 15(1), 1930 pp. 271–283.

[12] E. O. Hwang, Digital Logic and Microprocessor Design with VHDL,
CL Engineering, 2005.

[13] J. D. Plummer, M. Deal and P. B. Griffin, Silicon VLSI Technology:
Fundamentals, Practice, and Modeling, Upper Saddle River, NJ: Prentice
Hall, 2000.

Wireworld++: Simulation of Nonplanar Digital Electronic Circuits 41

https://doi.org/10.25088/ComplexSystems.27.1.19

https://www.quinapalus.com/wi-index.html
https://unnikked.ga/simulate-logic-circuits-using-wireworld-cellular-automaton-11391bc26b1c
https://unnikked.ga/simulate-logic-circuits-using-wireworld-cellular-automaton-11391bc26b1c
http://www.heise.ws/threeticklogic.html
https://github.com/jimblandy/golly/blob/master/src/Patterns/WireWorld/NickGardner.mcl
https://github.com/jimblandy/golly/blob/master/src/Patterns/WireWorld/NickGardner.mcl
http://golly.sourceforge.net/
https://github.com/burubaxair/wireworld-pp
https://doi.org/10.25088/ComplexSystems.27.1.19

[14] R. J. Baker, CMOS: Circuit Design, Layout, and Simulation (rev. 2nd
ed.), Piscataway, NJ: IEEE Press; Hoboken, NJ: Wiley-Interscience,
2008.

[15] K. Scherer. “WireWorld Gates and Gadgets” from the Wolfram Demon-
strations Project—A Wolfram Web Resource.
demonstrations.wolfram.com/WireWorldGatesAndGadgets.

[16] L. M. G. Feijs, “Reinventing Electronics with Cellular Automata,” Com-
plex Systems, 18(1), 2008 pp. 53–73.
www.complex-systems.com/pdf/18-1-3.pdf.

[17] A. Adamatzky, ed., Advances in Unconventional Computing: Volume 1:
Theory, Switzerland: Springer International Publishing, 2017.

[18] A. Adamatzky, ed., Advances in Unconventional Computing: Volume 2:
Prototypes, Models and Algorithms, Switzerland: Springer International
Publishing, 2017.

[19] E. Katz, ed., Molecular and Supramolecular Information Processing:
From Molecular Switches to Logic Systems, Weinheim, Germany: Wiley-
VCH, 2012.

[20] LifeWiki. “Non-isotropic Life-Like Cellular Automaton.” (Jan 26,
2018) conwaylife.com/wiki/Non-isotropic_Life-like_cellular _automata.

[21] M. Walraet. “Wireworld—Un monde cablé.” (Jan 29, 2018)
matthieu.walraet.net/automate/automate.html.

[22] B. P. Belousov, “Periodically Acting Reaction and Its Mechanism,”
Sbornik referatov po radiotsionnoi meditsine, Moscow: Medgiz, 1958
pp. 145–147.

[23] A. Zhabotinsky, “Periodic Liquid Phase Reactions,” Proceedings of the
USSR Academy of Sciences, 157(2), 1964 pp. 392–395.

[24] I. Sendiña-Nadal, E. Mihaliuk, J. Wang, V. Pérez-Muñuzuri and
K. Showalter, “Wave Propagation in Subexcitable Media with Periodi-
cally Modulated Excitability,” Physical Review Letters, 86(8), 2001
pp.�1646–1649. doi:10.1103/PhysRevLett.86.1646.

[25] R. Toth, C. Stone, A. Adamatzky, B. de Lacy Costello and L. Bull,
“Experimental Validation of Binary Collisions between Wave Fragments
in the Photosensitive Belousov–Zhabotinsky Reaction,” Chaos, Solitons
& Fractals, 41(4), 2009 pp. 1605–1615.
doi:10.1016/j.chaos.2008.07.001.

[26] A. Adamatzky and B. de Lacy Costello, “Binary Collisions between
Wave-Fragments in a Sub-excitable Belousov–Zhabotinsky Medium,”
Chaos, Solitons & Fractals, 34(2), 2007 pp. 307–315.
doi:10.1016/j.chaos.2006.03.095.

[27] A. Adamatzky and B. de Lacy Costello, “Experimental Logical Gates in
a Reaction-Diffusion Medium: The XOR Gate and Beyond,” Physical
Review E, 66(4), 2002 046112. doi:10.1103/PhysRevE.66.046112.

42 V. Gladkikh and A. Nigay

Complex Systems, 27 © 2018

http://demonstrations.wolfram.com/WireWorldGatesAndGadgets/
http://www.complex-systems.com/pdf/18-1-3.pdf
http://conwaylife.com/wiki/Non-isotropic_Life-like_cellular_automata
http://matthieu.walraet.net/automate/automate.html
https://dx.doi.org/10.1103/PhysRevLett.86.1646
https://doi.org/10.1016/j.chaos.2008.07.001
https://doi.org/10.1016/j.chaos.2006.03.095
https://dx.doi.org/10.1103/PhysRevE.66.046112

[28] A. Adamatzky, “Collision-Based Computing in Belousov–Zhabotinsky
Medium,” Chaos, Solitons & Fractals, 21(5), 2004 pp. 1259–1264.
doi:10.1016/j.chaos.2003.12.068.

[29] B. de Lacy Costello and A. Adamatzky, “Experimental Implementation
of Collision-Based Gates in Belousov–Zhabotinsky Medium,” Chaos,
Solitons & Fractals, 25(3), 2005 pp. 535–544.
doi:10.1016/j.chaos.2004.11.056.

[30] NEUNEU. “Artificial Wet Neuronal Networks from Compartmen-
talised Excitable Chemical Media.” (Jan 29, 2018) www.neu-n.eu.

[31] A. Adamatzky, J. Holley, L. Bull and B. De Lacy Costello, “On Comput-
ing in Fine-Grained Compartmentalised Belousov–Zhabotinsky
Medium,” Chaos, Solitons & Fractals, 44(10), 2011 pp. 779–790.
doi:10.1016/j.chaos.2011.03.010.

[32] J. Holley, A. Adamatzky, L. Bull, B. De Lacy Costello and I. Jahan,
“Computational Modalities of Belousov–Zhabotinsky Encapsulated
Vesicles,” Nano Communication Networks, 2(1), 2011 pp. 50–61.
doi:10.1016/j.nancom.2011.02.002.

[33] A. Adamatzky and A. Wuensche, “Computing in Spiral Rule Reaction-
Diffusion Hexagonal Cellular Automaton,” Complex Systems, 16(4),
2006 pp. 277–297. www.complex-systems.com/pdf/16-4-1.pdf.

[34] A. Wuensche and A. Adamatzky, “On Spiral Glider-Guns in Hexagonal
Cellular Automata: Activator-Inhibitor Paradigm,” International Jour-
nal of Modern Physics C, 17(7), 2006 pp. 1009–1026.
doi:10.1142/S012918310600945X.

[35] A. Adamatzky, G. J. Martínez, L. Zhang and A. Wuensche, “Operating
Binary Strings Using Gliders and Eaters in Reaction-Diffusion Cellular
Automaton,” Mathematical and Computer Modelling, 52(1–2), 2010
pp. 177–190. doi:10.1016/j.mcm.2010.02.006.

[36] A. Schumann and A. Adamatzky, “Toward Semantical Model of Reac-
tion-Diffusion Computing,” Kybernetes, 38(9), 2009 pp. 1518–1531.
doi:10.1108/03684920910991504.

[37] B. de Lacy Costello, R. Toth, C. Stone, A. Adamatzky and L. Bull,
“Implementation of Glider Guns in the Light-Sensitive Belousov–
Zhabotinsky Medium,” Physical Review E, 79(2), 2009 026114.
doi:10.1103/PhysRevE.79.026114.

Wireworld++: Simulation of Nonplanar Digital Electronic Circuits 43

https://doi.org/10.25088/ComplexSystems.27.1.19

https://doi.org/10.1016/j.chaos.2003.12.068
https://doi.org/10.1016/j.chaos.2004.11.056
http://www.neu-n.eu/
https://doi.org/10.1016/j.chaos.2011.03.010
https://doi.org/10.1016/j.nancom.2011.02.002
http://www.complex-systems.com/pdf/16-4-1.pdf
https://dx.doi.org/10.1142/S012918310600945X
https://dx.doi.org/10.1016/j.mcm.2010.02.006
https://dx.doi.org/10.1108/03684920910991504
https://dx.doi.org/10.1103/PhysRevE.79.026114
https://doi.org/10.25088/ComplexSystems.27.1.19

